{"title":"基于配位键的自修复聚合物","authors":"Cheng-Hui Li, Jing-Lin Zuo","doi":"10.1002/adma.201903762","DOIUrl":null,"url":null,"abstract":"<p>Self-healing ability is an important survival feature in nature, with which living beings can spontaneously repair damage when wounded. Inspired by nature, people have designed and synthesized many self-healing materials by encapsulating healing agents or incorporating reversible covalent bonds or noncovalent interactions into a polymer matrix. Among the noncovalent interactions, the coordination bond is demonstrated to be effective for constructing highly efficient self-healing polymers. Moreover, with the presence of functional metal ions or ligands and dynamic metal–ligand bonds, self-healing polymers can show various functions such as dielectrics, luminescence, magnetism, catalysis, stimuli-responsiveness, and shape-memory behavior. Herein, the recent developments and achievements made in the field of self-healing polymers based on coordination bonds are presented. The advantages of coordination bonds in constructing self-healing polymers are highlighted, the various metal–ligand bonds being utilized in self-healing polymers are summarized, and examples of functional self-healing polymers originating from metal–ligand interactions are given. Finally, a perspective is included addressing the promises and challenges for the future development of self-healing polymers based on coordination bonds.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"32 27","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adma.201903762","citationCount":"248","resultStr":"{\"title\":\"Self-Healing Polymers Based on Coordination Bonds\",\"authors\":\"Cheng-Hui Li, Jing-Lin Zuo\",\"doi\":\"10.1002/adma.201903762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-healing ability is an important survival feature in nature, with which living beings can spontaneously repair damage when wounded. Inspired by nature, people have designed and synthesized many self-healing materials by encapsulating healing agents or incorporating reversible covalent bonds or noncovalent interactions into a polymer matrix. Among the noncovalent interactions, the coordination bond is demonstrated to be effective for constructing highly efficient self-healing polymers. Moreover, with the presence of functional metal ions or ligands and dynamic metal–ligand bonds, self-healing polymers can show various functions such as dielectrics, luminescence, magnetism, catalysis, stimuli-responsiveness, and shape-memory behavior. Herein, the recent developments and achievements made in the field of self-healing polymers based on coordination bonds are presented. The advantages of coordination bonds in constructing self-healing polymers are highlighted, the various metal–ligand bonds being utilized in self-healing polymers are summarized, and examples of functional self-healing polymers originating from metal–ligand interactions are given. Finally, a perspective is included addressing the promises and challenges for the future development of self-healing polymers based on coordination bonds.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"32 27\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2019-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/adma.201903762\",\"citationCount\":\"248\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.201903762\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.201903762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-healing ability is an important survival feature in nature, with which living beings can spontaneously repair damage when wounded. Inspired by nature, people have designed and synthesized many self-healing materials by encapsulating healing agents or incorporating reversible covalent bonds or noncovalent interactions into a polymer matrix. Among the noncovalent interactions, the coordination bond is demonstrated to be effective for constructing highly efficient self-healing polymers. Moreover, with the presence of functional metal ions or ligands and dynamic metal–ligand bonds, self-healing polymers can show various functions such as dielectrics, luminescence, magnetism, catalysis, stimuli-responsiveness, and shape-memory behavior. Herein, the recent developments and achievements made in the field of self-healing polymers based on coordination bonds are presented. The advantages of coordination bonds in constructing self-healing polymers are highlighted, the various metal–ligand bonds being utilized in self-healing polymers are summarized, and examples of functional self-healing polymers originating from metal–ligand interactions are given. Finally, a perspective is included addressing the promises and challenges for the future development of self-healing polymers based on coordination bonds.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.