谱Mackey函子与等变代数k理论,2

IF 0.8 Q2 MATHEMATICS
C. Barwick, Saul Glasman, J. Shah
{"title":"谱Mackey函子与等变代数k理论,2","authors":"C. Barwick, Saul Glasman, J. Shah","doi":"10.2140/tunis.2020.2.97","DOIUrl":null,"url":null,"abstract":"We study the \"higher algebra\" of spectral Mackey functors, which the first named author introduced in Part I of this paper. In particular, armed with our new theory of symmetric promonoidal $\\infty$-categories and a suitable generalization of the second named author's Day convolution, we endow the $\\infty$-category of Mackey functors with a well-behaved symmetric monoidal structure. This makes it possible to speak of spectral Green functors for any operad $O$. We also answer a question of A. Mathew, proving that the algebraic $K$-theory of group actions is lax symmetric monoidal. We also show that the algebraic $K$-theory of derived stacks provides an example. Finally, we give a very short, new proof of the equivariant Barratt-Priddy-Quillen theorem, which states that the algebraic $K$-theory of the category of finite $G$-sets is simply the $G$-equivariant sphere spectrum.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2015-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.97","citationCount":"57","resultStr":"{\"title\":\"Spectral Mackey functors and equivariant\\nalgebraic K-theory, II\",\"authors\":\"C. Barwick, Saul Glasman, J. Shah\",\"doi\":\"10.2140/tunis.2020.2.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the \\\"higher algebra\\\" of spectral Mackey functors, which the first named author introduced in Part I of this paper. In particular, armed with our new theory of symmetric promonoidal $\\\\infty$-categories and a suitable generalization of the second named author's Day convolution, we endow the $\\\\infty$-category of Mackey functors with a well-behaved symmetric monoidal structure. This makes it possible to speak of spectral Green functors for any operad $O$. We also answer a question of A. Mathew, proving that the algebraic $K$-theory of group actions is lax symmetric monoidal. We also show that the algebraic $K$-theory of derived stacks provides an example. Finally, we give a very short, new proof of the equivariant Barratt-Priddy-Quillen theorem, which states that the algebraic $K$-theory of the category of finite $G$-sets is simply the $G$-equivariant sphere spectrum.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2015-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2020.2.97\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2020.2.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 57

摘要

我们研究了谱Mackey函子的“高等代数”,这是第一作者在第一部分中介绍的。特别地,利用我们的新的对称原一元$\infty$ -范畴理论和对第二个命名的author's Day卷积的适当推广,我们赋予了$\infty$ -范畴的麦基函子一个表现良好的对称一元结构。这使得对任何操作符$O$都可以使用谱格林函子。我们还回答了a . Mathew的一个问题,证明了群作用的代数$K$ -理论是松弛对称一元的。我们还证明了派生堆栈的代数$K$ -理论提供了一个例子。最后,我们给出了一个非常简短的、新的等变baratt - priddy - quillen定理的证明,证明了有限$G$ -集合范畴的代数$K$ -理论就是$G$ -等变球谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Mackey functors and equivariant algebraic K-theory, II
We study the "higher algebra" of spectral Mackey functors, which the first named author introduced in Part I of this paper. In particular, armed with our new theory of symmetric promonoidal $\infty$-categories and a suitable generalization of the second named author's Day convolution, we endow the $\infty$-category of Mackey functors with a well-behaved symmetric monoidal structure. This makes it possible to speak of spectral Green functors for any operad $O$. We also answer a question of A. Mathew, proving that the algebraic $K$-theory of group actions is lax symmetric monoidal. We also show that the algebraic $K$-theory of derived stacks provides an example. Finally, we give a very short, new proof of the equivariant Barratt-Priddy-Quillen theorem, which states that the algebraic $K$-theory of the category of finite $G$-sets is simply the $G$-equivariant sphere spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信