{"title":"超临界五次NLS的几乎确定局部适定性","authors":"J. Brereton","doi":"10.2140/tunis.2019.1.427","DOIUrl":null,"url":null,"abstract":"This paper studies the quintic nonlinear Schr\\\"odinger equation on $\\mathbb{R}^d$ with randomized initial data below the critical regularity $H^{\\frac{d-1}{2}}$. The main result is a proof of almost sure local well-posedness given a Wiener Randomization of the data in $H^s$ for $s \\in (\\frac{d-2}{2}, \\frac{d-1}{2})$. The argument further develops the techniques introduced in the work of \\'A. B\\'enyi, T. Oh and O. Pocovnicu on the cubic problem. The paper concludes with a condition for almost sure global well-posedness.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2016-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.427","citationCount":"18","resultStr":"{\"title\":\"Almost sure local well-posedness for the supercritical quintic NLS\",\"authors\":\"J. Brereton\",\"doi\":\"10.2140/tunis.2019.1.427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the quintic nonlinear Schr\\\\\\\"odinger equation on $\\\\mathbb{R}^d$ with randomized initial data below the critical regularity $H^{\\\\frac{d-1}{2}}$. The main result is a proof of almost sure local well-posedness given a Wiener Randomization of the data in $H^s$ for $s \\\\in (\\\\frac{d-2}{2}, \\\\frac{d-1}{2})$. The argument further develops the techniques introduced in the work of \\\\'A. B\\\\'enyi, T. Oh and O. Pocovnicu on the cubic problem. The paper concludes with a condition for almost sure global well-posedness.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2016-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2019.1.427\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2019.1.427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
摘要
研究了$\mathbb{R}^d$上随机初始数据低于临界正则性$H^{\frac{d-1}{2}}$的五次非线性Schr\ odinger方程。主要结果是给出$H^s$中$s \in (\frac{d-2}{2}, \frac{d-1}{2})$的数据的Wiener随机化,证明了几乎肯定的局部适定性。该论证进一步发展了A的工作中引入的技术。B 'enyi T. Oh和O. Pocovnicu关于三次问题。最后给出了几乎确定全局适定性的一个条件。
Almost sure local well-posedness for the supercritical quintic NLS
This paper studies the quintic nonlinear Schr\"odinger equation on $\mathbb{R}^d$ with randomized initial data below the critical regularity $H^{\frac{d-1}{2}}$. The main result is a proof of almost sure local well-posedness given a Wiener Randomization of the data in $H^s$ for $s \in (\frac{d-2}{2}, \frac{d-1}{2})$. The argument further develops the techniques introduced in the work of \'A. B\'enyi, T. Oh and O. Pocovnicu on the cubic problem. The paper concludes with a condition for almost sure global well-posedness.