Konstantinos Varvoutas, Georgia Kougka, A. Gounaris
{"title":"系统地利用业务流程中的并行任务执行","authors":"Konstantinos Varvoutas, Georgia Kougka, A. Gounaris","doi":"10.2298/csis230401057v","DOIUrl":null,"url":null,"abstract":"Business process re-engineering (or optimization) has been attracting a lot of interest, and it is considered as a core element of business process management (BPM). One of its most effective mechanisms is task re-sequencing with a view to decreasing process duration and costs, whereas duration (aka cycle time) can be reduced using task parallelism as well. In this work, we propose a novel combination of these two mechanisms, which is resource allocation-aware. Starting from a solution where a given resource allocation in business processes can drive optimizations in an underlying BPMN diagram, our proposal considers resource allocation and model modifications in a combined manner, where an initially suboptimal resource allocation can lead to better overall process executions. More specifically, the main contribution is twofold: (i) to present a proposal that leverages a variant of representation of processes as Refined Process Structure Trees (RPSTs) with a view to enabling novel resource allocation-driven task re-ordering and parallelisation in a principled manner, and (ii) to introduce a resource allocation paradigm that assigns tasks to resources taking into account the re-sequencing opportunities that can arise. The results show that we can yield improvements in a very high proportion of our experimental cases, while these improvements can reach 45% decrease in cycle time.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"20 1","pages":"1661-1685"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic exploitation of parallel task execution in business processes\",\"authors\":\"Konstantinos Varvoutas, Georgia Kougka, A. Gounaris\",\"doi\":\"10.2298/csis230401057v\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Business process re-engineering (or optimization) has been attracting a lot of interest, and it is considered as a core element of business process management (BPM). One of its most effective mechanisms is task re-sequencing with a view to decreasing process duration and costs, whereas duration (aka cycle time) can be reduced using task parallelism as well. In this work, we propose a novel combination of these two mechanisms, which is resource allocation-aware. Starting from a solution where a given resource allocation in business processes can drive optimizations in an underlying BPMN diagram, our proposal considers resource allocation and model modifications in a combined manner, where an initially suboptimal resource allocation can lead to better overall process executions. More specifically, the main contribution is twofold: (i) to present a proposal that leverages a variant of representation of processes as Refined Process Structure Trees (RPSTs) with a view to enabling novel resource allocation-driven task re-ordering and parallelisation in a principled manner, and (ii) to introduce a resource allocation paradigm that assigns tasks to resources taking into account the re-sequencing opportunities that can arise. The results show that we can yield improvements in a very high proportion of our experimental cases, while these improvements can reach 45% decrease in cycle time.\",\"PeriodicalId\":50636,\"journal\":{\"name\":\"Computer Science and Information Systems\",\"volume\":\"20 1\",\"pages\":\"1661-1685\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2298/csis230401057v\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis230401057v","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Systematic exploitation of parallel task execution in business processes
Business process re-engineering (or optimization) has been attracting a lot of interest, and it is considered as a core element of business process management (BPM). One of its most effective mechanisms is task re-sequencing with a view to decreasing process duration and costs, whereas duration (aka cycle time) can be reduced using task parallelism as well. In this work, we propose a novel combination of these two mechanisms, which is resource allocation-aware. Starting from a solution where a given resource allocation in business processes can drive optimizations in an underlying BPMN diagram, our proposal considers resource allocation and model modifications in a combined manner, where an initially suboptimal resource allocation can lead to better overall process executions. More specifically, the main contribution is twofold: (i) to present a proposal that leverages a variant of representation of processes as Refined Process Structure Trees (RPSTs) with a view to enabling novel resource allocation-driven task re-ordering and parallelisation in a principled manner, and (ii) to introduce a resource allocation paradigm that assigns tasks to resources taking into account the re-sequencing opportunities that can arise. The results show that we can yield improvements in a very high proportion of our experimental cases, while these improvements can reach 45% decrease in cycle time.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.