关于几乎所有版本的巴洛格-塞梅雷迪-高尔斯定理

IF 1 3区 数学 Q1 MATHEMATICS
Discrete Analysis Pub Date : 2018-11-26 DOI:10.19086/DA.9095
X. Shao
{"title":"关于几乎所有版本的巴洛格-塞梅雷迪-高尔斯定理","authors":"X. Shao","doi":"10.19086/DA.9095","DOIUrl":null,"url":null,"abstract":"We deduce, as a consequence of the arithmetic removal lemma, an almost-all version of the Balog-Szemer\\'{e}di-Gowers theorem: For any $K\\geq 1$ and $\\varepsilon > 0$, there exists $\\delta = \\delta(K,\\varepsilon)>0$ such that the following statement holds: if $|A+_{\\Gamma}A| \\leq K|A|$ for some $\\Gamma \\geq (1-\\delta)|A|^2$, then there is a subset $A' \\subset A$ with $|A'| \\geq (1-\\varepsilon)|A|$ such that $|A'+A'| \\leq |A+_{\\Gamma}A| + \\varepsilon |A|$. We also discuss issues around quantitative bounds in this statement, in particular showing that when $A \\subset \\mathbb{Z}$ the dependence of $\\delta$ on $\\epsilon$ cannot be polynomial for any fixed $K>2$.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On an almost all version of the Balog-Szemeredi-Gowers theorem\",\"authors\":\"X. Shao\",\"doi\":\"10.19086/DA.9095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deduce, as a consequence of the arithmetic removal lemma, an almost-all version of the Balog-Szemer\\\\'{e}di-Gowers theorem: For any $K\\\\geq 1$ and $\\\\varepsilon > 0$, there exists $\\\\delta = \\\\delta(K,\\\\varepsilon)>0$ such that the following statement holds: if $|A+_{\\\\Gamma}A| \\\\leq K|A|$ for some $\\\\Gamma \\\\geq (1-\\\\delta)|A|^2$, then there is a subset $A' \\\\subset A$ with $|A'| \\\\geq (1-\\\\varepsilon)|A|$ such that $|A'+A'| \\\\leq |A+_{\\\\Gamma}A| + \\\\varepsilon |A|$. We also discuss issues around quantitative bounds in this statement, in particular showing that when $A \\\\subset \\\\mathbb{Z}$ the dependence of $\\\\delta$ on $\\\\epsilon$ cannot be polynomial for any fixed $K>2$.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.9095\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.9095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

作为算术去除引理的结果,我们推导出了几乎所有版本的balog - szemer - gowers定理 $K\geq 1$ 和 $\varepsilon > 0$,存在 $\delta = \delta(K,\varepsilon)>0$ 使得下面的语句成立:如果 $|A+_{\Gamma}A| \leq K|A|$ 对一些人来说 $\Gamma \geq (1-\delta)|A|^2$,那么就有一个子集 $A' \subset A$ 有 $|A'| \geq (1-\varepsilon)|A|$ 这样 $|A'+A'| \leq |A+_{\Gamma}A| + \varepsilon |A|$. 我们还讨论了这个表述中关于数量界限的问题,特别是当 $A \subset \mathbb{Z}$ 的依赖性 $\delta$ on $\epsilon$ 不可能是多项式 $K>2$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an almost all version of the Balog-Szemeredi-Gowers theorem
We deduce, as a consequence of the arithmetic removal lemma, an almost-all version of the Balog-Szemer\'{e}di-Gowers theorem: For any $K\geq 1$ and $\varepsilon > 0$, there exists $\delta = \delta(K,\varepsilon)>0$ such that the following statement holds: if $|A+_{\Gamma}A| \leq K|A|$ for some $\Gamma \geq (1-\delta)|A|^2$, then there is a subset $A' \subset A$ with $|A'| \geq (1-\varepsilon)|A|$ such that $|A'+A'| \leq |A+_{\Gamma}A| + \varepsilon |A|$. We also discuss issues around quantitative bounds in this statement, in particular showing that when $A \subset \mathbb{Z}$ the dependence of $\delta$ on $\epsilon$ cannot be polynomial for any fixed $K>2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信