Kleinberg-Sawin-Speyer猜想的证明

IF 1 3区 数学 Q1 MATHEMATICS
Discrete Analysis Pub Date : 2016-08-19 DOI:10.19086/DA.3733
Luke Pebody
{"title":"Kleinberg-Sawin-Speyer猜想的证明","authors":"Luke Pebody","doi":"10.19086/DA.3733","DOIUrl":null,"url":null,"abstract":"In Ellenberg and Gijswijt's groundbreaking work~\\cite{EllenbergGijswijt}, the authors show that a subset of $\\mathbb{Z}_3^{n}$ with no arithmetic progression of length 3 must be of size at most $2.755^n$ (no prior upper bound was known of $(3-\\epsilon)^n)$), and provide for any prime $p$ a value $\\lambda_p<p$ such that any subset of $\\mathbb{Z}_p^{n}$ with no arithmetic progression of length 3 must be of size at most $\\lambda_p^n$. \r\nBlasiak et al~\\cite{BlasiakEtAl} showed that the same bounds apply to tri-coloured sum-free sets, which are triples $\\{(a_i,b_i,c_i):a_i,b_i,c_i\\in\\mathbb{Z}_p^{n}\\}$ with $a_i+b_j+c_k=0$ if and only if $i=j=k$. \r\nBuilding on this work, Kleinberg, Sawin and Speyer~\\cite{KleinbergSawinSpeyer} gave a description of a value $\\mu_p$ such that no tri-coloured sum-free sets of size $e^{\\mu_p n}$ exist in $\\mathbb{Z}_p^{n}$, but for any $\\epsilon>0$, such sets of size $e^{(\\mu_p-\\epsilon) n}$ exist for all sufficiently large $n$. The value of $\\mu_p$ was left open, but a conjecture was stated which would imply that $e^{\\mu_p}=\\lambda_p$, i.e. the Ellenberg-Gijswijt bound is correct for the sum-free set problem. \r\nThe purpose of this note is to close that gap. The conjecture of Kleinberg, Sawin and Speyer is true, and the Ellenberg-Gijswijt bound is the correct exponent for the sum-free set problem.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Proof of a conjecture of Kleinberg-Sawin-Speyer\",\"authors\":\"Luke Pebody\",\"doi\":\"10.19086/DA.3733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Ellenberg and Gijswijt's groundbreaking work~\\\\cite{EllenbergGijswijt}, the authors show that a subset of $\\\\mathbb{Z}_3^{n}$ with no arithmetic progression of length 3 must be of size at most $2.755^n$ (no prior upper bound was known of $(3-\\\\epsilon)^n)$), and provide for any prime $p$ a value $\\\\lambda_p<p$ such that any subset of $\\\\mathbb{Z}_p^{n}$ with no arithmetic progression of length 3 must be of size at most $\\\\lambda_p^n$. \\r\\nBlasiak et al~\\\\cite{BlasiakEtAl} showed that the same bounds apply to tri-coloured sum-free sets, which are triples $\\\\{(a_i,b_i,c_i):a_i,b_i,c_i\\\\in\\\\mathbb{Z}_p^{n}\\\\}$ with $a_i+b_j+c_k=0$ if and only if $i=j=k$. \\r\\nBuilding on this work, Kleinberg, Sawin and Speyer~\\\\cite{KleinbergSawinSpeyer} gave a description of a value $\\\\mu_p$ such that no tri-coloured sum-free sets of size $e^{\\\\mu_p n}$ exist in $\\\\mathbb{Z}_p^{n}$, but for any $\\\\epsilon>0$, such sets of size $e^{(\\\\mu_p-\\\\epsilon) n}$ exist for all sufficiently large $n$. The value of $\\\\mu_p$ was left open, but a conjecture was stated which would imply that $e^{\\\\mu_p}=\\\\lambda_p$, i.e. the Ellenberg-Gijswijt bound is correct for the sum-free set problem. \\r\\nThe purpose of this note is to close that gap. The conjecture of Kleinberg, Sawin and Speyer is true, and the Ellenberg-Gijswijt bound is the correct exponent for the sum-free set problem.\",\"PeriodicalId\":37312,\"journal\":{\"name\":\"Discrete Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19086/DA.3733\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.3733","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

摘要

在Ellenberg和Gijswijt的开创性工作\cite{EllenbergGijswijt}中,作者表明,长度为3的算式数列$\mathbb{Z}_3^{n}$的子集的大小必须最多为$2.755^n$(不知道$(3-\epsilon)^n)$的上界),并且提供任何素数$p$ a值$\lambda_p0$,这样的大小集$e^{(\mu_p-\epsilon) n}$存在于所有足够大的$n$。$\mu_p$的值是开放的,但提出了一个猜想,这意味着$e^{\mu_p}=\lambda_p$,即Ellenberg-Gijswijt界对于无和集问题是正确的。本文的目的就是弥补这一差距。Kleinberg、Sawin和Speyer的猜想是正确的,Ellenberg-Gijswijt界是无和集问题的正确指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a conjecture of Kleinberg-Sawin-Speyer
In Ellenberg and Gijswijt's groundbreaking work~\cite{EllenbergGijswijt}, the authors show that a subset of $\mathbb{Z}_3^{n}$ with no arithmetic progression of length 3 must be of size at most $2.755^n$ (no prior upper bound was known of $(3-\epsilon)^n)$), and provide for any prime $p$ a value $\lambda_p0$, such sets of size $e^{(\mu_p-\epsilon) n}$ exist for all sufficiently large $n$. The value of $\mu_p$ was left open, but a conjecture was stated which would imply that $e^{\mu_p}=\lambda_p$, i.e. the Ellenberg-Gijswijt bound is correct for the sum-free set problem. The purpose of this note is to close that gap. The conjecture of Kleinberg, Sawin and Speyer is true, and the Ellenberg-Gijswijt bound is the correct exponent for the sum-free set problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信