N. A. Villacrés, É. Cavalheiro, Carla C Schmitt, T. Venâncio, H. Alarcón, A. Valderrama
{"title":"氨基乙氧基乙烯基甘氨酸海藻酸钠复合膜的制备","authors":"N. A. Villacrés, É. Cavalheiro, Carla C Schmitt, T. Venâncio, H. Alarcón, A. Valderrama","doi":"10.21577/0103-5053.20230064","DOIUrl":null,"url":null,"abstract":"Composite films are an alternative in the replacement of synthetic polymers. These films can be prepared from polysaccharides and used to store various drugs to be applied in different areas. In addition, aminoethoxyvinylglycine (AVG) is an ethylene inhibitor that prolongs shelf life of food. For this reason, this research aimed to take advantage of the brown algae Macrocystis pyrifera and Lessonia trabeculata to extract sodium alginate and produce films composed of sodium alginate/ kappa-carrageenan/iota-carrageenan, which were plasticized with glycerol and polyethylene glycol 400 and loaded with aminoethoxyvinylglycine. The extracted sodium alginate was characterized by 1 H and 13C nuclear magnetic resonance (NMR), size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), thermogravimetry (TG/DTG), Fourier transform infrared (FTIR), and X-ray diffraction (XRD); and the composite films were characterized by FTIR, XRD, TG/DTG, and scanning electron microscopy (SEM). Then, the drug release kinetics were investigated using Higuchi and Korsmeyer-Peppas kinetic models. The extracted alginates obtained were of low molecular weight, and the films showed desirable properties for AVG release. Furthermore, drug release profiles revealed that AVG release is governed by Fick’s Law, and this is favored at low temperatures. In summary, sodium alginate allows the preparation of composite films, which can replace synthetic polymers to be used in the loading and releasing of drugs.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Composite Films of Sodium Alginate-Based Extracted from Seaweeds Macrocystis pyrifera and Lessonia trabeculata Loaded with Aminoethoxyvinylglycine\",\"authors\":\"N. A. Villacrés, É. Cavalheiro, Carla C Schmitt, T. Venâncio, H. Alarcón, A. Valderrama\",\"doi\":\"10.21577/0103-5053.20230064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite films are an alternative in the replacement of synthetic polymers. These films can be prepared from polysaccharides and used to store various drugs to be applied in different areas. In addition, aminoethoxyvinylglycine (AVG) is an ethylene inhibitor that prolongs shelf life of food. For this reason, this research aimed to take advantage of the brown algae Macrocystis pyrifera and Lessonia trabeculata to extract sodium alginate and produce films composed of sodium alginate/ kappa-carrageenan/iota-carrageenan, which were plasticized with glycerol and polyethylene glycol 400 and loaded with aminoethoxyvinylglycine. The extracted sodium alginate was characterized by 1 H and 13C nuclear magnetic resonance (NMR), size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), thermogravimetry (TG/DTG), Fourier transform infrared (FTIR), and X-ray diffraction (XRD); and the composite films were characterized by FTIR, XRD, TG/DTG, and scanning electron microscopy (SEM). Then, the drug release kinetics were investigated using Higuchi and Korsmeyer-Peppas kinetic models. The extracted alginates obtained were of low molecular weight, and the films showed desirable properties for AVG release. Furthermore, drug release profiles revealed that AVG release is governed by Fick’s Law, and this is favored at low temperatures. In summary, sodium alginate allows the preparation of composite films, which can replace synthetic polymers to be used in the loading and releasing of drugs.\",\"PeriodicalId\":17257,\"journal\":{\"name\":\"Journal of the Brazilian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.21577/0103-5053.20230064\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20230064","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of Composite Films of Sodium Alginate-Based Extracted from Seaweeds Macrocystis pyrifera and Lessonia trabeculata Loaded with Aminoethoxyvinylglycine
Composite films are an alternative in the replacement of synthetic polymers. These films can be prepared from polysaccharides and used to store various drugs to be applied in different areas. In addition, aminoethoxyvinylglycine (AVG) is an ethylene inhibitor that prolongs shelf life of food. For this reason, this research aimed to take advantage of the brown algae Macrocystis pyrifera and Lessonia trabeculata to extract sodium alginate and produce films composed of sodium alginate/ kappa-carrageenan/iota-carrageenan, which were plasticized with glycerol and polyethylene glycol 400 and loaded with aminoethoxyvinylglycine. The extracted sodium alginate was characterized by 1 H and 13C nuclear magnetic resonance (NMR), size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), thermogravimetry (TG/DTG), Fourier transform infrared (FTIR), and X-ray diffraction (XRD); and the composite films were characterized by FTIR, XRD, TG/DTG, and scanning electron microscopy (SEM). Then, the drug release kinetics were investigated using Higuchi and Korsmeyer-Peppas kinetic models. The extracted alginates obtained were of low molecular weight, and the films showed desirable properties for AVG release. Furthermore, drug release profiles revealed that AVG release is governed by Fick’s Law, and this is favored at low temperatures. In summary, sodium alginate allows the preparation of composite films, which can replace synthetic polymers to be used in the loading and releasing of drugs.
期刊介绍:
The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.