极性非质子溶剂中α,β-不饱和亚胺的形成:隐含酸催化剂的理论计算分析

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Virginia C. Rufino, Josefredo Pliego Jr.
{"title":"极性非质子溶剂中α,β-不饱和亚胺的形成:隐含酸催化剂的理论计算分析","authors":"Virginia C. Rufino, Josefredo Pliego Jr.","doi":"10.21577/0103-5053.20230063","DOIUrl":null,"url":null,"abstract":"A theoretical investigation of the 1,2-additon and 1,4-addition reactions of benzylamine to crotonaldehyde in toluene solution is reported in this study, including the effect of trace amounts of acetic acid (AcOH) and methanesulfonic acid (CH3SO2OH). We have determined the reaction free energy profile and performed a detailed microkinetic analysis. Our results point out that this reaction system needs catalysis to take place and it was found that CH3SO2OH is a powerful catalyst, outperforming AcOH in lowering the free energy barrier for the 1,2-addition reaction, which leads to the formation of a,b-unsaturated imine. On the other hand, the 1,4-addition reaction has the direct nucleophilic attack of benzylamine to the b-carbon of s-cis conformation of crotonaldehyde as the rate-determining step, corresponding to slow kinetics. Our results suggest that the experimentally observed formation of the imine can be explained by the presence of hidden acid catalysts present in the reaction medium.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of α,β-Unsaturated Imines in Apolar Aprotic Solvent: Effect of Hidden Acid Catalysts Analyzed by Theoretical Calculations\",\"authors\":\"Virginia C. Rufino, Josefredo Pliego Jr.\",\"doi\":\"10.21577/0103-5053.20230063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical investigation of the 1,2-additon and 1,4-addition reactions of benzylamine to crotonaldehyde in toluene solution is reported in this study, including the effect of trace amounts of acetic acid (AcOH) and methanesulfonic acid (CH3SO2OH). We have determined the reaction free energy profile and performed a detailed microkinetic analysis. Our results point out that this reaction system needs catalysis to take place and it was found that CH3SO2OH is a powerful catalyst, outperforming AcOH in lowering the free energy barrier for the 1,2-addition reaction, which leads to the formation of a,b-unsaturated imine. On the other hand, the 1,4-addition reaction has the direct nucleophilic attack of benzylamine to the b-carbon of s-cis conformation of crotonaldehyde as the rate-determining step, corresponding to slow kinetics. Our results suggest that the experimentally observed formation of the imine can be explained by the presence of hidden acid catalysts present in the reaction medium.\",\"PeriodicalId\":17257,\"journal\":{\"name\":\"Journal of the Brazilian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.21577/0103-5053.20230063\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20230063","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文从理论上研究了苯胺在甲苯溶液中与巴丁醛的1,2加成和1,4加成反应,包括微量乙酸(AcOH)和甲磺酸(CH3SO2OH)对反应的影响。我们确定了反应的自由能分布,并进行了详细的微动力学分析。我们的研究结果指出,该反应体系需要催化才能发生,并且发现CH3SO2OH是一种强大的催化剂,在降低1,2-加成反应的自由能垒方面优于AcOH,从而导致a,b-不饱和亚胺的形成。另一方面,1,4加成反应以苯胺对巴豆醛s-顺式构象的b-碳的直接亲核攻击为速率决定步骤,对应于慢动力学。我们的结果表明,实验观察到的亚胺的形成可以解释为存在于反应介质中隐藏的酸性催化剂的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of α,β-Unsaturated Imines in Apolar Aprotic Solvent: Effect of Hidden Acid Catalysts Analyzed by Theoretical Calculations
A theoretical investigation of the 1,2-additon and 1,4-addition reactions of benzylamine to crotonaldehyde in toluene solution is reported in this study, including the effect of trace amounts of acetic acid (AcOH) and methanesulfonic acid (CH3SO2OH). We have determined the reaction free energy profile and performed a detailed microkinetic analysis. Our results point out that this reaction system needs catalysis to take place and it was found that CH3SO2OH is a powerful catalyst, outperforming AcOH in lowering the free energy barrier for the 1,2-addition reaction, which leads to the formation of a,b-unsaturated imine. On the other hand, the 1,4-addition reaction has the direct nucleophilic attack of benzylamine to the b-carbon of s-cis conformation of crotonaldehyde as the rate-determining step, corresponding to slow kinetics. Our results suggest that the experimentally observed formation of the imine can be explained by the presence of hidden acid catalysts present in the reaction medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
7.10%
发文量
99
审稿时长
3.4 months
期刊介绍: The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信