药用植物提取物对糖异生的影响

A. Andrade-Cetto
{"title":"药用植物提取物对糖异生的影响","authors":"A. Andrade-Cetto","doi":"10.2147/BTAT.S24726","DOIUrl":null,"url":null,"abstract":"Correspondence: Adolfo Andrade-Cetto Laboratorio de Etnofarmacologia, Departamento de Biologia Celular, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, D.F. Mexico Email aac@ciencias.unam.mx Abstract: On a global level, type 2 diabetes mellitus (T2DM) is the most common endocrine disorder. T2DM is defined as an elevated blood glucose level associated with the absence of or inadequacy in pancreatic insulin secretion. The liver plays a key role in maintaining blood glucose levels during fasting by synthesizing glucose, mainly from lactate and amino acids through a process called gluconeogenesis. Because hepatic glucose production is increased at least twofold in patients with T2DM, targeting this pathway may lead to a blood glucose reduction in these patients. Botanical agents show promise for the development of new compounds to treat T2DM. Important mechanisms of action function via the inhibition of gluconeogenesis can occur in one of five ways: direct enzyme inhibition; through the downregulation of mRNA levels of fructose-1,6-bisphosphatase and glucose-6-phosphatase (G-6-P); through the activation of AMP-activated protein kinase, which leads to decreased levels of cAMP response elementbinding protein, a key transcription factor for gluconeogenic enzyme phosphorylation; through the expression of the glucokinase gene, which stimulates glucokinase activity and inhibits G-6-P; and through the inhibition of phosphoenolpyruvate carboxykinase, which decreases gluconeogenesis and enzymatically inhibits G-6-P and fructose-1,6-diphosphatase.","PeriodicalId":91458,"journal":{"name":"Botanics : targets and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/BTAT.S24726","citationCount":"12","resultStr":"{\"title\":\"Effects of medicinal plant extracts on gluconeogenesis\",\"authors\":\"A. Andrade-Cetto\",\"doi\":\"10.2147/BTAT.S24726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correspondence: Adolfo Andrade-Cetto Laboratorio de Etnofarmacologia, Departamento de Biologia Celular, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, D.F. Mexico Email aac@ciencias.unam.mx Abstract: On a global level, type 2 diabetes mellitus (T2DM) is the most common endocrine disorder. T2DM is defined as an elevated blood glucose level associated with the absence of or inadequacy in pancreatic insulin secretion. The liver plays a key role in maintaining blood glucose levels during fasting by synthesizing glucose, mainly from lactate and amino acids through a process called gluconeogenesis. Because hepatic glucose production is increased at least twofold in patients with T2DM, targeting this pathway may lead to a blood glucose reduction in these patients. Botanical agents show promise for the development of new compounds to treat T2DM. Important mechanisms of action function via the inhibition of gluconeogenesis can occur in one of five ways: direct enzyme inhibition; through the downregulation of mRNA levels of fructose-1,6-bisphosphatase and glucose-6-phosphatase (G-6-P); through the activation of AMP-activated protein kinase, which leads to decreased levels of cAMP response elementbinding protein, a key transcription factor for gluconeogenic enzyme phosphorylation; through the expression of the glucokinase gene, which stimulates glucokinase activity and inhibits G-6-P; and through the inhibition of phosphoenolpyruvate carboxykinase, which decreases gluconeogenesis and enzymatically inhibits G-6-P and fructose-1,6-diphosphatase.\",\"PeriodicalId\":91458,\"journal\":{\"name\":\"Botanics : targets and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/BTAT.S24726\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanics : targets and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/BTAT.S24726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanics : targets and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/BTAT.S24726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通信:Adolfo andade - cetto实验室de Etnofarmacologia,系de生物细胞,墨西哥国立自治大学,科约阿坎04510,D.F.墨西哥电子邮件aac@ciencias.unam.mx摘要:在全球范围内,2型糖尿病(T2DM)是最常见的内分泌疾病。T2DM被定义为血糖水平升高与胰腺胰岛素分泌缺乏或不足相关。肝脏在维持空腹血糖水平方面发挥着关键作用,主要通过葡萄糖异生过程从乳酸和氨基酸合成葡萄糖。由于2型糖尿病患者的肝糖生成至少增加了两倍,靶向这一途径可能导致这些患者的血糖降低。植物制剂有望开发治疗2型糖尿病的新化合物。通过抑制糖异生的重要作用机制可以通过以下五种方式之一发生:直接酶抑制;通过下调果糖-1,6-二磷酸酶和葡萄糖-6-磷酸酶(G-6-P) mRNA水平;通过激活amp活化的蛋白激酶,导致cAMP反应元件结合蛋白水平下降,这是糖异生酶磷酸化的关键转录因子;通过表达葡萄糖激酶基因,刺激葡萄糖激酶活性,抑制G-6-P;通过抑制磷酸烯醇丙酮酸羧激酶,减少糖异生,酶促抑制G-6-P和果糖-1,6-二磷酸酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of medicinal plant extracts on gluconeogenesis
Correspondence: Adolfo Andrade-Cetto Laboratorio de Etnofarmacologia, Departamento de Biologia Celular, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, D.F. Mexico Email aac@ciencias.unam.mx Abstract: On a global level, type 2 diabetes mellitus (T2DM) is the most common endocrine disorder. T2DM is defined as an elevated blood glucose level associated with the absence of or inadequacy in pancreatic insulin secretion. The liver plays a key role in maintaining blood glucose levels during fasting by synthesizing glucose, mainly from lactate and amino acids through a process called gluconeogenesis. Because hepatic glucose production is increased at least twofold in patients with T2DM, targeting this pathway may lead to a blood glucose reduction in these patients. Botanical agents show promise for the development of new compounds to treat T2DM. Important mechanisms of action function via the inhibition of gluconeogenesis can occur in one of five ways: direct enzyme inhibition; through the downregulation of mRNA levels of fructose-1,6-bisphosphatase and glucose-6-phosphatase (G-6-P); through the activation of AMP-activated protein kinase, which leads to decreased levels of cAMP response elementbinding protein, a key transcription factor for gluconeogenic enzyme phosphorylation; through the expression of the glucokinase gene, which stimulates glucokinase activity and inhibits G-6-P; and through the inhibition of phosphoenolpyruvate carboxykinase, which decreases gluconeogenesis and enzymatically inhibits G-6-P and fructose-1,6-diphosphatase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信