用内变量描述粘弹性阻尼器框架特征问题的子空间迭代法

Q4 Engineering
M. Łasecka-Plura
{"title":"用内变量描述粘弹性阻尼器框架特征问题的子空间迭代法","authors":"M. Łasecka-Plura","doi":"10.21008/J.0860-6897.2020.3.13","DOIUrl":null,"url":null,"abstract":"In the paper, the subspace iteration method is used to solve quadratic eigenproblems written for structures with viscoelastic dampers. This allows a certain previously assumed number of eigenvalues and corresponding eigenvectors to be determined. A shear frame with mass lumped on the storey level with built-in dampers is considered. Dampers are modelled with the classical Zener model. Equations of motion are written in the matrix form and include the internal variables resulting from built-in dampers. The subspace iteration method starts from adopting the number of sought solution for the quadratic eigenproblem, then the starting point of the iteration is determined and the iterative procedure is initiated. In each iterative loop the reduced quadratic eigenproblem with Hermitian matrices is solved by rearranging it into a state space form.","PeriodicalId":38508,"journal":{"name":"Vibrations in Physical Systems","volume":"31 1","pages":"2020313-1-2020313-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Subspace Iteration Method for Eigenproblems of Frames with Viscoelastic Dampers Described Using Internal Variables\",\"authors\":\"M. Łasecka-Plura\",\"doi\":\"10.21008/J.0860-6897.2020.3.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, the subspace iteration method is used to solve quadratic eigenproblems written for structures with viscoelastic dampers. This allows a certain previously assumed number of eigenvalues and corresponding eigenvectors to be determined. A shear frame with mass lumped on the storey level with built-in dampers is considered. Dampers are modelled with the classical Zener model. Equations of motion are written in the matrix form and include the internal variables resulting from built-in dampers. The subspace iteration method starts from adopting the number of sought solution for the quadratic eigenproblem, then the starting point of the iteration is determined and the iterative procedure is initiated. In each iterative loop the reduced quadratic eigenproblem with Hermitian matrices is solved by rearranging it into a state space form.\",\"PeriodicalId\":38508,\"journal\":{\"name\":\"Vibrations in Physical Systems\",\"volume\":\"31 1\",\"pages\":\"2020313-1-2020313-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrations in Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21008/J.0860-6897.2020.3.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrations in Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21008/J.0860-6897.2020.3.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文采用子空间迭代法求解含粘弹性阻尼器结构的二次特征问题。这允许确定某些先前假设的特征值和相应的特征向量的数量。考虑了一种剪力框架,其质量集中在具有内置阻尼器的楼层上。阻尼器采用经典齐纳模型进行建模。运动方程以矩阵形式书写,并包括由内置阻尼器产生的内部变量。子空间迭代法从选取二次特征问题的求解个数开始,确定迭代的起始点,开始迭代过程。在每个迭代循环中,通过将厄米矩阵的简化二次特征问题重新排列成状态空间形式来求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Subspace Iteration Method for Eigenproblems of Frames with Viscoelastic Dampers Described Using Internal Variables
In the paper, the subspace iteration method is used to solve quadratic eigenproblems written for structures with viscoelastic dampers. This allows a certain previously assumed number of eigenvalues and corresponding eigenvectors to be determined. A shear frame with mass lumped on the storey level with built-in dampers is considered. Dampers are modelled with the classical Zener model. Equations of motion are written in the matrix form and include the internal variables resulting from built-in dampers. The subspace iteration method starts from adopting the number of sought solution for the quadratic eigenproblem, then the starting point of the iteration is determined and the iterative procedure is initiated. In each iterative loop the reduced quadratic eigenproblem with Hermitian matrices is solved by rearranging it into a state space form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vibrations in Physical Systems
Vibrations in Physical Systems Engineering-Mechanics of Materials
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信