弹性基础上对称变化力学性能圆板的自由轴对称弯曲振动

Q4 Engineering
K. Magnucki
{"title":"弹性基础上对称变化力学性能圆板的自由轴对称弯曲振动","authors":"K. Magnucki","doi":"10.21008/J.0860-6897.2020.2.17","DOIUrl":null,"url":null,"abstract":"The subject of the paper is a circular plate with clamped edge supported on elastic foundation. Mechanical properties of the plate symmetrically vary in its thickness direction. Free axisymmetric flexural vibration problem of the plate with consideration of the shear effect is analytically studied. Two partial differential equations of motion based on the Hamilton principle are obtained. The system of equations is analytically solved and the fundamental natural frequency of axisymmetric vibration for example plates is derived.","PeriodicalId":38508,"journal":{"name":"Vibrations in Physical Systems","volume":"31 1","pages":"2020217-1-2020217-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free Axisymmetric Flexural Vibrations of Circular Plate with Symmetrically Varying Mechanical Properties Supported on Elastic Foundation\",\"authors\":\"K. Magnucki\",\"doi\":\"10.21008/J.0860-6897.2020.2.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of the paper is a circular plate with clamped edge supported on elastic foundation. Mechanical properties of the plate symmetrically vary in its thickness direction. Free axisymmetric flexural vibration problem of the plate with consideration of the shear effect is analytically studied. Two partial differential equations of motion based on the Hamilton principle are obtained. The system of equations is analytically solved and the fundamental natural frequency of axisymmetric vibration for example plates is derived.\",\"PeriodicalId\":38508,\"journal\":{\"name\":\"Vibrations in Physical Systems\",\"volume\":\"31 1\",\"pages\":\"2020217-1-2020217-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrations in Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21008/J.0860-6897.2020.2.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrations in Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21008/J.0860-6897.2020.2.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文的研究对象是一个边缘夹紧在弹性基础上的圆板。板的力学性能在厚度方向上呈对称变化。对考虑剪切效应的板的自由轴对称弯曲振动问题进行了分析研究。基于哈密顿原理得到了两个运动偏微分方程。对方程组进行了解析求解,导出了以板为例的轴对称振动的基本固有频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free Axisymmetric Flexural Vibrations of Circular Plate with Symmetrically Varying Mechanical Properties Supported on Elastic Foundation
The subject of the paper is a circular plate with clamped edge supported on elastic foundation. Mechanical properties of the plate symmetrically vary in its thickness direction. Free axisymmetric flexural vibration problem of the plate with consideration of the shear effect is analytically studied. Two partial differential equations of motion based on the Hamilton principle are obtained. The system of equations is analytically solved and the fundamental natural frequency of axisymmetric vibration for example plates is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vibrations in Physical Systems
Vibrations in Physical Systems Engineering-Mechanics of Materials
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信