{"title":"通过先进的地下地球细胞地球建模实现跨学科协作和正演建模","authors":"R. Dusterhoft, S. Siddiqui, C. Davila","doi":"10.2113/GSCPGBULL.63.4.393","DOIUrl":null,"url":null,"abstract":"Abstract In many situations, our industry today has become very focused on managing huge quantities of data, looking for simple correlations that would enable them to capture useful information applicable to asset planning and field development. One of the key issues with this approach is that it is always looking backward to determine the path forward. By nature, this process is reactionary, making it difficult to identify opportunities for real innovation. Having assessed the industry position, a new approach was examined where data and information could be continuously fed into an evolving sub-surface geocellular earth modeling tool. This would represent a significant change from the traditional modeling tools where changes are limited due to the time and effort required to collect and process new information, then work through the entire modeling process. This new approach requires a geocellular earth model that is capable of receiving new information continuously and updating quickly. Forward modeling in this way provides a single environment where geoscientists and engineers can work together to improve their understanding of the reservoir, leverage the latest generation of tools to model cause and effect behaviors, and quickly establish optimized field development solutions. Statistical tools are still very useful for monitoring performance, but this data is also used to calibrate design tools to enable continuous refinement to the subsurface geocellular model and forward modeling tools. By accomplishing this, a common collaboration environment is created where both geoscientists and engineers can collaborate and work with the most current and most relevant subsurface information and knowledge. This concept has been tested in a number of proof-of-concept projects that have shown very promising results, one of which is discussed in detail in this paper.","PeriodicalId":56325,"journal":{"name":"Bullentin of Canadian Petroleum Geology","volume":"63 1","pages":"393-402"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSCPGBULL.63.4.393","citationCount":"1","resultStr":"{\"title\":\"Enabling Cross-discipline Collaboration and Forward Modeling through Advanced Subsurface Geocellular Earth Modeling\",\"authors\":\"R. Dusterhoft, S. Siddiqui, C. Davila\",\"doi\":\"10.2113/GSCPGBULL.63.4.393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In many situations, our industry today has become very focused on managing huge quantities of data, looking for simple correlations that would enable them to capture useful information applicable to asset planning and field development. One of the key issues with this approach is that it is always looking backward to determine the path forward. By nature, this process is reactionary, making it difficult to identify opportunities for real innovation. Having assessed the industry position, a new approach was examined where data and information could be continuously fed into an evolving sub-surface geocellular earth modeling tool. This would represent a significant change from the traditional modeling tools where changes are limited due to the time and effort required to collect and process new information, then work through the entire modeling process. This new approach requires a geocellular earth model that is capable of receiving new information continuously and updating quickly. Forward modeling in this way provides a single environment where geoscientists and engineers can work together to improve their understanding of the reservoir, leverage the latest generation of tools to model cause and effect behaviors, and quickly establish optimized field development solutions. Statistical tools are still very useful for monitoring performance, but this data is also used to calibrate design tools to enable continuous refinement to the subsurface geocellular model and forward modeling tools. By accomplishing this, a common collaboration environment is created where both geoscientists and engineers can collaborate and work with the most current and most relevant subsurface information and knowledge. This concept has been tested in a number of proof-of-concept projects that have shown very promising results, one of which is discussed in detail in this paper.\",\"PeriodicalId\":56325,\"journal\":{\"name\":\"Bullentin of Canadian Petroleum Geology\",\"volume\":\"63 1\",\"pages\":\"393-402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2113/GSCPGBULL.63.4.393\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bullentin of Canadian Petroleum Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/GSCPGBULL.63.4.393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bullentin of Canadian Petroleum Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSCPGBULL.63.4.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Enabling Cross-discipline Collaboration and Forward Modeling through Advanced Subsurface Geocellular Earth Modeling
Abstract In many situations, our industry today has become very focused on managing huge quantities of data, looking for simple correlations that would enable them to capture useful information applicable to asset planning and field development. One of the key issues with this approach is that it is always looking backward to determine the path forward. By nature, this process is reactionary, making it difficult to identify opportunities for real innovation. Having assessed the industry position, a new approach was examined where data and information could be continuously fed into an evolving sub-surface geocellular earth modeling tool. This would represent a significant change from the traditional modeling tools where changes are limited due to the time and effort required to collect and process new information, then work through the entire modeling process. This new approach requires a geocellular earth model that is capable of receiving new information continuously and updating quickly. Forward modeling in this way provides a single environment where geoscientists and engineers can work together to improve their understanding of the reservoir, leverage the latest generation of tools to model cause and effect behaviors, and quickly establish optimized field development solutions. Statistical tools are still very useful for monitoring performance, but this data is also used to calibrate design tools to enable continuous refinement to the subsurface geocellular model and forward modeling tools. By accomplishing this, a common collaboration environment is created where both geoscientists and engineers can collaborate and work with the most current and most relevant subsurface information and knowledge. This concept has been tested in a number of proof-of-concept projects that have shown very promising results, one of which is discussed in detail in this paper.
期刊介绍:
The Bulletin of Canadian Petroleum Geology is a peer-reviewed scientific journal published four times a year. Founded in 1953, the BCPG aims to be the journal of record for papers dealing with all aspects of petroleum geology, broadly conceived, with a particularly (though not exclusively) Canadian focus. International submissions are encouraged, especially where a connection can be made to Canadian examples.