Y. Shuai, Shuichang Zhang, Dade Ma, Liquan Wang, G. Jiang, Ziyuan Xu, Ling Huang, Yirui Xu
{"title":"柴达木盆地第四纪生物气","authors":"Y. Shuai, Shuichang Zhang, Dade Ma, Liquan Wang, G. Jiang, Ziyuan Xu, Ling Huang, Yirui Xu","doi":"10.2113/GSCPGBULL.63.1.75","DOIUrl":null,"url":null,"abstract":"Abstract The Quaternary Qigequan Formation, a continental clastic sedimentation system in Sanhu Depression of eastern Qaidam Basin, west-central China, contains abundant biogenic gas resources. Favorable characteristics of the Sanhu Depression’s geological history and framework responsible for biogenic gas production include rapid sedimentation, shallow burial depth, organic-rich sediments, high porosity/permeability, and a saline depositional environment. Gases are dominated by methane (>99%), with trace ethane/propane (C2+3<0.5%) and minor non-hydrocarbon gases (CO2 <0.5%; N2 <3%). Methane has δ13C1 values of −70 to −62‰ and δD1 values of −240 to −220‰, suggesting generation following a CO2 reduction pathway. Ethane is very light with δ13C2 values of −50 to −44‰; propane δ13C3 values range from −34 to −32‰. Ethane and propane are inferred to have the same thermocatalytic origin under low organic maturity levels and are unrelated to the biogenic origin of methane. Biogenic methane is equilibrated with the saline formation waters. The formation water geochemistry data, including stable isotope values (δD and δ18O) and 36Cl age, suggest recent dilution by meteoric waters. Methanogenesis is currently active, as indicated by the presence of both abundant hydrogen and microbes. The recent and ongoing biogenic gas generation model proposed explains why biogenic gas accumulations are so abundant in a shallow geological setting where the conditions for accumulation and preservation are otherwise considered relatively poor.","PeriodicalId":56325,"journal":{"name":"Bullentin of Canadian Petroleum Geology","volume":"63 1","pages":"75-83"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSCPGBULL.63.1.75","citationCount":"7","resultStr":"{\"title\":\"Quaternary biogenic gases in the Qaidam Basin, Western China\",\"authors\":\"Y. Shuai, Shuichang Zhang, Dade Ma, Liquan Wang, G. Jiang, Ziyuan Xu, Ling Huang, Yirui Xu\",\"doi\":\"10.2113/GSCPGBULL.63.1.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Quaternary Qigequan Formation, a continental clastic sedimentation system in Sanhu Depression of eastern Qaidam Basin, west-central China, contains abundant biogenic gas resources. Favorable characteristics of the Sanhu Depression’s geological history and framework responsible for biogenic gas production include rapid sedimentation, shallow burial depth, organic-rich sediments, high porosity/permeability, and a saline depositional environment. Gases are dominated by methane (>99%), with trace ethane/propane (C2+3<0.5%) and minor non-hydrocarbon gases (CO2 <0.5%; N2 <3%). Methane has δ13C1 values of −70 to −62‰ and δD1 values of −240 to −220‰, suggesting generation following a CO2 reduction pathway. Ethane is very light with δ13C2 values of −50 to −44‰; propane δ13C3 values range from −34 to −32‰. Ethane and propane are inferred to have the same thermocatalytic origin under low organic maturity levels and are unrelated to the biogenic origin of methane. Biogenic methane is equilibrated with the saline formation waters. The formation water geochemistry data, including stable isotope values (δD and δ18O) and 36Cl age, suggest recent dilution by meteoric waters. Methanogenesis is currently active, as indicated by the presence of both abundant hydrogen and microbes. The recent and ongoing biogenic gas generation model proposed explains why biogenic gas accumulations are so abundant in a shallow geological setting where the conditions for accumulation and preservation are otherwise considered relatively poor.\",\"PeriodicalId\":56325,\"journal\":{\"name\":\"Bullentin of Canadian Petroleum Geology\",\"volume\":\"63 1\",\"pages\":\"75-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2113/GSCPGBULL.63.1.75\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bullentin of Canadian Petroleum Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/GSCPGBULL.63.1.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bullentin of Canadian Petroleum Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSCPGBULL.63.1.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Quaternary biogenic gases in the Qaidam Basin, Western China
Abstract The Quaternary Qigequan Formation, a continental clastic sedimentation system in Sanhu Depression of eastern Qaidam Basin, west-central China, contains abundant biogenic gas resources. Favorable characteristics of the Sanhu Depression’s geological history and framework responsible for biogenic gas production include rapid sedimentation, shallow burial depth, organic-rich sediments, high porosity/permeability, and a saline depositional environment. Gases are dominated by methane (>99%), with trace ethane/propane (C2+3<0.5%) and minor non-hydrocarbon gases (CO2 <0.5%; N2 <3%). Methane has δ13C1 values of −70 to −62‰ and δD1 values of −240 to −220‰, suggesting generation following a CO2 reduction pathway. Ethane is very light with δ13C2 values of −50 to −44‰; propane δ13C3 values range from −34 to −32‰. Ethane and propane are inferred to have the same thermocatalytic origin under low organic maturity levels and are unrelated to the biogenic origin of methane. Biogenic methane is equilibrated with the saline formation waters. The formation water geochemistry data, including stable isotope values (δD and δ18O) and 36Cl age, suggest recent dilution by meteoric waters. Methanogenesis is currently active, as indicated by the presence of both abundant hydrogen and microbes. The recent and ongoing biogenic gas generation model proposed explains why biogenic gas accumulations are so abundant in a shallow geological setting where the conditions for accumulation and preservation are otherwise considered relatively poor.
期刊介绍:
The Bulletin of Canadian Petroleum Geology is a peer-reviewed scientific journal published four times a year. Founded in 1953, the BCPG aims to be the journal of record for papers dealing with all aspects of petroleum geology, broadly conceived, with a particularly (though not exclusively) Canadian focus. International submissions are encouraged, especially where a connection can be made to Canadian examples.