M. Ximenes, Carolina Mayumi Cavalcanti Taguchi, T. C. Triches, N. Sartori, Luís Alberto Pereira Dias, E. B. de Araújo, M. Cardoso
{"title":"应用17% EDTA增强(45)Ca标记的OH(-)和Ca(2+)在主牙根管内的扩散","authors":"M. Ximenes, Carolina Mayumi Cavalcanti Taguchi, T. C. Triches, N. Sartori, Luís Alberto Pereira Dias, E. B. de Araújo, M. Cardoso","doi":"10.2209/tdcpublication.57.21","DOIUrl":null,"url":null,"abstract":"Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+).","PeriodicalId":45490,"journal":{"name":"Bulletin of Tokyo Dental College","volume":"57 1 1","pages":"21-7"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2209/tdcpublication.57.21","citationCount":"0","resultStr":"{\"title\":\"Application of 17% EDTA Enhances Diffusion of (45)Ca-labeled OH(-) and Ca(2+) in Primary Tooth Root Canal.\",\"authors\":\"M. Ximenes, Carolina Mayumi Cavalcanti Taguchi, T. C. Triches, N. Sartori, Luís Alberto Pereira Dias, E. B. de Araújo, M. Cardoso\",\"doi\":\"10.2209/tdcpublication.57.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+).\",\"PeriodicalId\":45490,\"journal\":{\"name\":\"Bulletin of Tokyo Dental College\",\"volume\":\"57 1 1\",\"pages\":\"21-7\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2209/tdcpublication.57.21\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Tokyo Dental College\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2209/tdcpublication.57.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Tokyo Dental College","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2209/tdcpublication.57.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Application of 17% EDTA Enhances Diffusion of (45)Ca-labeled OH(-) and Ca(2+) in Primary Tooth Root Canal.
Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+).