圆和球面的内禀丢番图近似

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-10-26 DOI:10.1112/mtk.12228
Byungchul Cha, Dong Han Kim
{"title":"圆和球面的内禀丢番图近似","authors":"Byungchul Cha,&nbsp;Dong Han Kim","doi":"10.1112/mtk.12228","DOIUrl":null,"url":null,"abstract":"<p>We study Lagrange spectra arising from intrinsic Diophantine approximation of circles and spheres. More precisely, we consider three circles embedded in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> or <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {R}^3$</annotation>\n </semantics></math> and three spheres embedded in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {R}^3$</annotation>\n </semantics></math> or <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>4</mn>\n </msup>\n <annotation>$\\mathbb {R}^4$</annotation>\n </semantics></math>. We present a unified framework to connect the Lagrange spectra of these six spaces with the spectra of <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>. Thanks to prior work of Asmus L. Schmidt on the spectra of <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>, we obtain as a corollary, for each of the six spectra, the smallest accumulation point and the initial discrete part leading up to it completely.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic Diophantine approximation on circles and spheres\",\"authors\":\"Byungchul Cha,&nbsp;Dong Han Kim\",\"doi\":\"10.1112/mtk.12228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study Lagrange spectra arising from intrinsic Diophantine approximation of circles and spheres. More precisely, we consider three circles embedded in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^3$</annotation>\\n </semantics></math> and three spheres embedded in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^3$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>4</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^4$</annotation>\\n </semantics></math>. We present a unified framework to connect the Lagrange spectra of these six spaces with the spectra of <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbb {C}$</annotation>\\n </semantics></math>. Thanks to prior work of Asmus L. Schmidt on the spectra of <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbb {C}$</annotation>\\n </semantics></math>, we obtain as a corollary, for each of the six spectra, the smallest accumulation point and the initial discrete part leading up to it completely.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12228\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12228","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由圆和球体的固有丢番图近似引起的拉格朗日谱。更确切地说,我们考虑嵌入R2$\mathbb{R}^2$或R3$\mathbb{R}^3$中的三个圆和嵌入R3中的三个子球$\mathbb{R}^3$或R 4$\mathbb{R}^ 4$。我们提出了一个统一的框架来连接这六个空间的拉格朗日谱与R$\mathbb{R}$和C$\mathbb{C}$的谱。由于Asmus L.Schmidt先前对R$\mathbb{R}$和C$\mathbb{C}$的谱所做的工作,我们得到了六个谱中每一个谱的最小累积点和完全通向它的初始离散部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic Diophantine approximation on circles and spheres

We study Lagrange spectra arising from intrinsic Diophantine approximation of circles and spheres. More precisely, we consider three circles embedded in R 2 $\mathbb {R}^2$ or R 3 $\mathbb {R}^3$ and three spheres embedded in R 3 $\mathbb {R}^3$ or R 4 $\mathbb {R}^4$ . We present a unified framework to connect the Lagrange spectra of these six spaces with the spectra of R $\mathbb {R}$ and C $\mathbb {C}$ . Thanks to prior work of Asmus L. Schmidt on the spectra of R $\mathbb {R}$ and C $\mathbb {C}$ , we obtain as a corollary, for each of the six spectra, the smallest accumulation point and the initial discrete part leading up to it completely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信