使用Kinect骨骼和深度传感器改进的3D人体动作捕捉

IF 0.9 Q4 ROBOTICS
Alireza Bilesan, S. Komizunai, T. Tsujita, A. Konno
{"title":"使用Kinect骨骼和深度传感器改进的3D人体动作捕捉","authors":"Alireza Bilesan, S. Komizunai, T. Tsujita, A. Konno","doi":"10.20965/jrm.2021.p1408","DOIUrl":null,"url":null,"abstract":"Kinect has been utilized as a cost-effective, easy-to-use motion capture sensor using the Kinect skeleton algorithm. However, a limited number of landmarks and inaccuracies in tracking the landmarks’ positions restrict Kinect’s capability. In order to increase the accuracy of motion capturing using Kinect, joint use of the Kinect skeleton algorithm and Kinect-based marker tracking was applied to track the 3D coordinates of multiple landmarks on human. The motion’s kinematic parameters were calculated using the landmarks’ positions by applying the joint constraints and inverse kinematics techniques. The accuracy of the proposed method and OptiTrack (NaturalPoint, Inc., USA) was evaluated in capturing the joint angles of a humanoid (as ground truth) in a walking test. In order to evaluate the accuracy of the proposed method in capturing the kinematic parameters of a human, lower body joint angles of five healthy subjects were extracted using a Kinect, and the results were compared to Perception Neuron (Noitom Ltd., China) and OptiTrack data during ten gait trials. The absolute agreement and consistency between each optical system and the robot data in the robot test and between each motion capture system and OptiTrack data in the human gait test were determined using intraclass correlations coefficients (ICC3). The reproducibility between systems was evaluated using Lin’s concordance correlation coefficient (CCC). The correlation coefficients with 95% confidence intervals (95%CI) were interpreted substantial for both OptiTrack and proposed method (ICC > 0.75 and CCC > 0.95) in humanoid test. The results of the human gait experiments demonstrated the advantage of the proposed method (ICC > 0.75 and RMSE = 1.1460°) over the Kinect skeleton model (ICC < 0.4 and RMSE = 6.5843°).","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"33 1","pages":"1408-1422"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved 3D Human Motion Capture Using Kinect Skeleton and Depth Sensor\",\"authors\":\"Alireza Bilesan, S. Komizunai, T. Tsujita, A. Konno\",\"doi\":\"10.20965/jrm.2021.p1408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinect has been utilized as a cost-effective, easy-to-use motion capture sensor using the Kinect skeleton algorithm. However, a limited number of landmarks and inaccuracies in tracking the landmarks’ positions restrict Kinect’s capability. In order to increase the accuracy of motion capturing using Kinect, joint use of the Kinect skeleton algorithm and Kinect-based marker tracking was applied to track the 3D coordinates of multiple landmarks on human. The motion’s kinematic parameters were calculated using the landmarks’ positions by applying the joint constraints and inverse kinematics techniques. The accuracy of the proposed method and OptiTrack (NaturalPoint, Inc., USA) was evaluated in capturing the joint angles of a humanoid (as ground truth) in a walking test. In order to evaluate the accuracy of the proposed method in capturing the kinematic parameters of a human, lower body joint angles of five healthy subjects were extracted using a Kinect, and the results were compared to Perception Neuron (Noitom Ltd., China) and OptiTrack data during ten gait trials. The absolute agreement and consistency between each optical system and the robot data in the robot test and between each motion capture system and OptiTrack data in the human gait test were determined using intraclass correlations coefficients (ICC3). The reproducibility between systems was evaluated using Lin’s concordance correlation coefficient (CCC). The correlation coefficients with 95% confidence intervals (95%CI) were interpreted substantial for both OptiTrack and proposed method (ICC > 0.75 and CCC > 0.95) in humanoid test. The results of the human gait experiments demonstrated the advantage of the proposed method (ICC > 0.75 and RMSE = 1.1460°) over the Kinect skeleton model (ICC < 0.4 and RMSE = 6.5843°).\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"33 1\",\"pages\":\"1408-1422\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2021.p1408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2021.p1408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 5

摘要

Kinect已被用作使用Kinect骨架算法的成本效益高、易于使用的动作捕捉传感器。然而,有限数量的地标和追踪地标位置的不准确性限制了Kinect的功能。为了提高Kinect动作捕捉的精度,将Kinect骨架算法与基于Kinect的标记跟踪相结合,对人体多个地标的三维坐标进行跟踪。利用关节约束和逆运动学技术,利用地标位置计算运动参数。在步行测试中,对所提出的方法和OptiTrack (NaturalPoint, Inc., USA)在捕获人形关节角度(作为地面真值)方面的准确性进行了评估。为了评估所提出的方法在捕获人体运动学参数方面的准确性,使用Kinect提取了5名健康受试者的下体关节角度,并将结果与Perception Neuron (Noitom Ltd., China)和OptiTrack在10次步态试验中的数据进行了比较。利用类内相关系数(ICC3)确定机器人测试中各光学系统与机器人数据之间以及人体步态测试中各运动捕捉系统与OptiTrack数据之间的绝对一致性。采用Lin’s一致性相关系数(CCC)评价系统间的重复性。OptiTrack和提议的方法(ICC > 0.75和CCC > 0.95)在人形试验中的95%置信区间(95% ci)的相关系数被解释为实质性的。人体步态实验结果表明,该方法(ICC > 0.75, RMSE = 1.1460°)优于Kinect骨骼模型(ICC < 0.4, RMSE = 6.5843°)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved 3D Human Motion Capture Using Kinect Skeleton and Depth Sensor
Kinect has been utilized as a cost-effective, easy-to-use motion capture sensor using the Kinect skeleton algorithm. However, a limited number of landmarks and inaccuracies in tracking the landmarks’ positions restrict Kinect’s capability. In order to increase the accuracy of motion capturing using Kinect, joint use of the Kinect skeleton algorithm and Kinect-based marker tracking was applied to track the 3D coordinates of multiple landmarks on human. The motion’s kinematic parameters were calculated using the landmarks’ positions by applying the joint constraints and inverse kinematics techniques. The accuracy of the proposed method and OptiTrack (NaturalPoint, Inc., USA) was evaluated in capturing the joint angles of a humanoid (as ground truth) in a walking test. In order to evaluate the accuracy of the proposed method in capturing the kinematic parameters of a human, lower body joint angles of five healthy subjects were extracted using a Kinect, and the results were compared to Perception Neuron (Noitom Ltd., China) and OptiTrack data during ten gait trials. The absolute agreement and consistency between each optical system and the robot data in the robot test and between each motion capture system and OptiTrack data in the human gait test were determined using intraclass correlations coefficients (ICC3). The reproducibility between systems was evaluated using Lin’s concordance correlation coefficient (CCC). The correlation coefficients with 95% confidence intervals (95%CI) were interpreted substantial for both OptiTrack and proposed method (ICC > 0.75 and CCC > 0.95) in humanoid test. The results of the human gait experiments demonstrated the advantage of the proposed method (ICC > 0.75 and RMSE = 1.1460°) over the Kinect skeleton model (ICC < 0.4 and RMSE = 6.5843°).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
36.40%
发文量
134
期刊介绍: First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信