{"title":"基于cnn的RGB-IR图像含水率地形分类","authors":"Tomoya Goto, G. Ishigami","doi":"10.20965/jrm.2021.p1294","DOIUrl":null,"url":null,"abstract":"Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"33 1","pages":"1294-1302"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images\",\"authors\":\"Tomoya Goto, G. Ishigami\",\"doi\":\"10.20965/jrm.2021.p1294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"33 1\",\"pages\":\"1294-1302\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2021.p1294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2021.p1294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images
Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.