K. Jalava, S. Räsänen, Kaija Ala-Kojola, Saara Nironen, J. Möttönen, J. Ollgren
{"title":"队列研究中具有Log-Link的二元回归模型","authors":"K. Jalava, S. Räsänen, Kaija Ala-Kojola, Saara Nironen, J. Möttönen, J. Ollgren","doi":"10.2174/1874297101306010018","DOIUrl":null,"url":null,"abstract":"Regression models have been used to control confounding in food borne cohort studies, logistic regression has been commonly used due to easy converge. However, logistic regression provide estimates for OR only when RR estimate is lower than 10%, an unlikely situation in food borne outbreaks. Recent developments have resolved the binary model convergence problems applying log link. Food items significant in the univariable analysis were included for the multivariable analysis of two recent Finnish norovirus outbreaks. We used both log and logistic regression models in R and Bayesian model in Winbugs by SPSS and R. The log-link model could be used to identify the vehicle in the two norovirus outbreak datasets. Convergence problems were solved using Bayesian modelling. Binary model applying log link provided accurate and useful estimates of RR estimating the true risk, a suitable method of choice for multivariable analysis of outbreak cohort studies.","PeriodicalId":87834,"journal":{"name":"The open epidemiology journal","volume":"6 1","pages":"18-20"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Regression Models with Log-Link in the Cohort Studies\",\"authors\":\"K. Jalava, S. Räsänen, Kaija Ala-Kojola, Saara Nironen, J. Möttönen, J. Ollgren\",\"doi\":\"10.2174/1874297101306010018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression models have been used to control confounding in food borne cohort studies, logistic regression has been commonly used due to easy converge. However, logistic regression provide estimates for OR only when RR estimate is lower than 10%, an unlikely situation in food borne outbreaks. Recent developments have resolved the binary model convergence problems applying log link. Food items significant in the univariable analysis were included for the multivariable analysis of two recent Finnish norovirus outbreaks. We used both log and logistic regression models in R and Bayesian model in Winbugs by SPSS and R. The log-link model could be used to identify the vehicle in the two norovirus outbreak datasets. Convergence problems were solved using Bayesian modelling. Binary model applying log link provided accurate and useful estimates of RR estimating the true risk, a suitable method of choice for multivariable analysis of outbreak cohort studies.\",\"PeriodicalId\":87834,\"journal\":{\"name\":\"The open epidemiology journal\",\"volume\":\"6 1\",\"pages\":\"18-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open epidemiology journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874297101306010018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open epidemiology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874297101306010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Binary Regression Models with Log-Link in the Cohort Studies
Regression models have been used to control confounding in food borne cohort studies, logistic regression has been commonly used due to easy converge. However, logistic regression provide estimates for OR only when RR estimate is lower than 10%, an unlikely situation in food borne outbreaks. Recent developments have resolved the binary model convergence problems applying log link. Food items significant in the univariable analysis were included for the multivariable analysis of two recent Finnish norovirus outbreaks. We used both log and logistic regression models in R and Bayesian model in Winbugs by SPSS and R. The log-link model could be used to identify the vehicle in the two norovirus outbreak datasets. Convergence problems were solved using Bayesian modelling. Binary model applying log link provided accurate and useful estimates of RR estimating the true risk, a suitable method of choice for multivariable analysis of outbreak cohort studies.