Ali Mastanabadi;Gholamreza Aghajani;Davar Mirabbasi
{"title":"使用基于MPPT和微调功率算法的新配置和控制系统,风电场在工频控制中的快速响应贡献","authors":"Ali Mastanabadi;Gholamreza Aghajani;Davar Mirabbasi","doi":"10.1109/ICJECE.2022.3192312","DOIUrl":null,"url":null,"abstract":"Nowadays, with the increasing expansion of the power grid and the use of wind energy systems, the issue of frequency control of the power system in their presence is very important. In traditional power systems, the control of frequency is generally performed by hydroelectric power plants that are the slack bus of the grid. They usually have fast dynamic responses, capable of changing the power output rapidly. This can be difficult in cases such as drought, lack of large hydropower plants, or the expansion of the power grid. In this article, a new topology and control system for a wind farm connected to a four-area grid through an high voltage dc (HVdc) link is presented, which can participate in the issue of frequency control of the power system. The proposed system is based on maximum power point tracking (MPPT) and fine tune control of the permanent magnet synchronous generator (PMSG)-based wind farm. The simulation results were evaluated on a four-area power grid, they were compared with the absence of wind farm in frequency control, and the desired results with appropriate and acceptable dynamic responses were achieved. The simulation results were performed on the MATLAB/Simulink environment.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"45 3","pages":"339-348"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind Farm Fast Response Contribution in Power Frequency Control, Using a New Configuration and Control System Based on MPPT and Fine Tune Power Algorithm\",\"authors\":\"Ali Mastanabadi;Gholamreza Aghajani;Davar Mirabbasi\",\"doi\":\"10.1109/ICJECE.2022.3192312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, with the increasing expansion of the power grid and the use of wind energy systems, the issue of frequency control of the power system in their presence is very important. In traditional power systems, the control of frequency is generally performed by hydroelectric power plants that are the slack bus of the grid. They usually have fast dynamic responses, capable of changing the power output rapidly. This can be difficult in cases such as drought, lack of large hydropower plants, or the expansion of the power grid. In this article, a new topology and control system for a wind farm connected to a four-area grid through an high voltage dc (HVdc) link is presented, which can participate in the issue of frequency control of the power system. The proposed system is based on maximum power point tracking (MPPT) and fine tune control of the permanent magnet synchronous generator (PMSG)-based wind farm. The simulation results were evaluated on a four-area power grid, they were compared with the absence of wind farm in frequency control, and the desired results with appropriate and acceptable dynamic responses were achieved. The simulation results were performed on the MATLAB/Simulink environment.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"45 3\",\"pages\":\"339-348\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9882958/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9882958/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Wind Farm Fast Response Contribution in Power Frequency Control, Using a New Configuration and Control System Based on MPPT and Fine Tune Power Algorithm
Nowadays, with the increasing expansion of the power grid and the use of wind energy systems, the issue of frequency control of the power system in their presence is very important. In traditional power systems, the control of frequency is generally performed by hydroelectric power plants that are the slack bus of the grid. They usually have fast dynamic responses, capable of changing the power output rapidly. This can be difficult in cases such as drought, lack of large hydropower plants, or the expansion of the power grid. In this article, a new topology and control system for a wind farm connected to a four-area grid through an high voltage dc (HVdc) link is presented, which can participate in the issue of frequency control of the power system. The proposed system is based on maximum power point tracking (MPPT) and fine tune control of the permanent magnet synchronous generator (PMSG)-based wind farm. The simulation results were evaluated on a four-area power grid, they were compared with the absence of wind farm in frequency control, and the desired results with appropriate and acceptable dynamic responses were achieved. The simulation results were performed on the MATLAB/Simulink environment.