{"title":"无故障注入的静默数据损坏估计与缓解","authors":"Moona Yakhchi;Mahdi Fazeli;Seyyed Amir Asghari","doi":"10.1109/ICJECE.2022.3189043","DOIUrl":null,"url":null,"abstract":"Silent data corruptions (SDCs) have been always regarded as the serious effect of radiation-induced faults. Traditional solutions based on redundancies are very expensive in terms of chip area, energy consumption, and performance. Consequently, providing low-cost and efficient approaches to cope with SDCs has received researchers’ attention more than ever. On the other hand, identifying SDC-prone data and instruction in a program is a very challenging issue, as it requires time-consuming fault injection processes into different parts of a program. In this article, we present a cost-efficient approach to detecting and mitigating the rate of SDCs in the whole program with the presence of multibit faults without a fault injection process. This approach uses a combination of machine learning and a metaheuristic algorithm that predicts the SDC event rate of each instruction. The evaluation results show that the proposed approach provides a high level of detection accuracy of 99% while offering a low-performance overhead of 58%.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"45 3","pages":"318-327"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silent Data Corruption Estimation and Mitigation Without Fault Injection\",\"authors\":\"Moona Yakhchi;Mahdi Fazeli;Seyyed Amir Asghari\",\"doi\":\"10.1109/ICJECE.2022.3189043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silent data corruptions (SDCs) have been always regarded as the serious effect of radiation-induced faults. Traditional solutions based on redundancies are very expensive in terms of chip area, energy consumption, and performance. Consequently, providing low-cost and efficient approaches to cope with SDCs has received researchers’ attention more than ever. On the other hand, identifying SDC-prone data and instruction in a program is a very challenging issue, as it requires time-consuming fault injection processes into different parts of a program. In this article, we present a cost-efficient approach to detecting and mitigating the rate of SDCs in the whole program with the presence of multibit faults without a fault injection process. This approach uses a combination of machine learning and a metaheuristic algorithm that predicts the SDC event rate of each instruction. The evaluation results show that the proposed approach provides a high level of detection accuracy of 99% while offering a low-performance overhead of 58%.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"45 3\",\"pages\":\"318-327\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9880922/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9880922/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Silent Data Corruption Estimation and Mitigation Without Fault Injection
Silent data corruptions (SDCs) have been always regarded as the serious effect of radiation-induced faults. Traditional solutions based on redundancies are very expensive in terms of chip area, energy consumption, and performance. Consequently, providing low-cost and efficient approaches to cope with SDCs has received researchers’ attention more than ever. On the other hand, identifying SDC-prone data and instruction in a program is a very challenging issue, as it requires time-consuming fault injection processes into different parts of a program. In this article, we present a cost-efficient approach to detecting and mitigating the rate of SDCs in the whole program with the presence of multibit faults without a fault injection process. This approach uses a combination of machine learning and a metaheuristic algorithm that predicts the SDC event rate of each instruction. The evaluation results show that the proposed approach provides a high level of detection accuracy of 99% while offering a low-performance overhead of 58%.