{"title":"基于扩散的分子通信系统符号间干扰模型及加权和检测","authors":"Musaab Saeed;Mehdi Maleki;Hamid Reza Bahrami","doi":"10.1109/TMBMC.2023.3266578","DOIUrl":null,"url":null,"abstract":"Inter-symbol interference (ISI) may result in substantial performance degradation in molecular communication systems. In this paper, we propose a more accurate and realistic ISI model compared to the literature, by quantifying the ISI in a three-dimensional fluid environment with a spherical receiver. Moreover, due to the propagation delay in a fluid environment, a large number of the molecules absorbed earlier in a transmission interval are due to the previous transmissions. Therefore, we find the optimal delay time, that the receiver should wait at the beginning of each time interval before counting the absorbed molecules, to reduce the effect of the ISI. Further, and to enhance the performance of the system, we adopt a detection approach based on multiple molecular observations at the receiver, and introduce a weighted sum detector, in which the transmission interval is divided into a number of sub-intervals. We analytically derive the weights, assigned to different sub-intervals, that minimize the bit error rate (BER). Simulations, based on the presented approaches, show the impact of the transmitter-receiver distance, the reaction rate, and the diffusion constant of the environment on the BER performance. We also show that using a weighted sum detector significantly improves the BER performance.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Inter-Symbol Interference Model and Weighted Sum Detection for Diffusion-Based Molecular Communication Systems\",\"authors\":\"Musaab Saeed;Mehdi Maleki;Hamid Reza Bahrami\",\"doi\":\"10.1109/TMBMC.2023.3266578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-symbol interference (ISI) may result in substantial performance degradation in molecular communication systems. In this paper, we propose a more accurate and realistic ISI model compared to the literature, by quantifying the ISI in a three-dimensional fluid environment with a spherical receiver. Moreover, due to the propagation delay in a fluid environment, a large number of the molecules absorbed earlier in a transmission interval are due to the previous transmissions. Therefore, we find the optimal delay time, that the receiver should wait at the beginning of each time interval before counting the absorbed molecules, to reduce the effect of the ISI. Further, and to enhance the performance of the system, we adopt a detection approach based on multiple molecular observations at the receiver, and introduce a weighted sum detector, in which the transmission interval is divided into a number of sub-intervals. We analytically derive the weights, assigned to different sub-intervals, that minimize the bit error rate (BER). Simulations, based on the presented approaches, show the impact of the transmitter-receiver distance, the reaction rate, and the diffusion constant of the environment on the BER performance. We also show that using a weighted sum detector significantly improves the BER performance.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10100961/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10100961/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Inter-Symbol Interference Model and Weighted Sum Detection for Diffusion-Based Molecular Communication Systems
Inter-symbol interference (ISI) may result in substantial performance degradation in molecular communication systems. In this paper, we propose a more accurate and realistic ISI model compared to the literature, by quantifying the ISI in a three-dimensional fluid environment with a spherical receiver. Moreover, due to the propagation delay in a fluid environment, a large number of the molecules absorbed earlier in a transmission interval are due to the previous transmissions. Therefore, we find the optimal delay time, that the receiver should wait at the beginning of each time interval before counting the absorbed molecules, to reduce the effect of the ISI. Further, and to enhance the performance of the system, we adopt a detection approach based on multiple molecular observations at the receiver, and introduce a weighted sum detector, in which the transmission interval is divided into a number of sub-intervals. We analytically derive the weights, assigned to different sub-intervals, that minimize the bit error rate (BER). Simulations, based on the presented approaches, show the impact of the transmitter-receiver distance, the reaction rate, and the diffusion constant of the environment on the BER performance. We also show that using a weighted sum detector significantly improves the BER performance.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.