铁蛋白及其相关生物系统中的电子隧道

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ismael Diez Perez;Sierin Lim;Christian A. Nijhuis;Olivier Pluchery;Christopher J. Rourk
{"title":"铁蛋白及其相关生物系统中的电子隧道","authors":"Ismael Diez Perez;Sierin Lim;Christian A. Nijhuis;Olivier Pluchery;Christopher J. Rourk","doi":"10.1109/TMBMC.2023.3275793","DOIUrl":null,"url":null,"abstract":"Ferritin is a 12 nanometer (nm) diameter iron storage protein complex that is found in most plants and animals. A substantial body of evidence has established that electrons can tunnel through and between ferritin protein nanoparticles and that it exhibits Coulomb blockade behavior, which is also seen in quantum dots and nanoparticles. This evidence can be used to understand the behavior of these particles for use in nanoelectronic devices, for biomedical applications and for investigation of quantum biological phenomena. Ferritin also has magnetic properties that make it useful for applications such as memristors and as a contrast agent for magnetic resonance imaging. This article provides a short overview of this evidence, as well as evidence of ferritin structures in vivo and of tunneling in those structures, with an emphasis on ferritin structures in substantia nigra pars compacta (SNc) neurons. Potential biomedical applications that could utilize these ferritin protein nanoparticles are also discussed.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10157988/10123991.pdf","citationCount":"0","resultStr":"{\"title\":\"Electron Tunneling in Ferritin and Associated Biosystems\",\"authors\":\"Ismael Diez Perez;Sierin Lim;Christian A. Nijhuis;Olivier Pluchery;Christopher J. Rourk\",\"doi\":\"10.1109/TMBMC.2023.3275793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferritin is a 12 nanometer (nm) diameter iron storage protein complex that is found in most plants and animals. A substantial body of evidence has established that electrons can tunnel through and between ferritin protein nanoparticles and that it exhibits Coulomb blockade behavior, which is also seen in quantum dots and nanoparticles. This evidence can be used to understand the behavior of these particles for use in nanoelectronic devices, for biomedical applications and for investigation of quantum biological phenomena. Ferritin also has magnetic properties that make it useful for applications such as memristors and as a contrast agent for magnetic resonance imaging. This article provides a short overview of this evidence, as well as evidence of ferritin structures in vivo and of tunneling in those structures, with an emphasis on ferritin structures in substantia nigra pars compacta (SNc) neurons. Potential biomedical applications that could utilize these ferritin protein nanoparticles are also discussed.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6687308/10157988/10123991.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10123991/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10123991/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

铁蛋白是一种直径为12纳米(nm)的铁储存蛋白复合物,存在于大多数植物和动物中。大量证据表明,电子可以穿过铁蛋白-蛋白质纳米颗粒并在其之间隧穿,并且表现出库仑阻断行为,这在量子点和纳米颗粒中也可以看到。这些证据可用于了解这些粒子的行为,用于纳米电子设备、生物医学应用和量子生物现象的研究。铁素还具有磁性,可用于忆阻器和磁共振成像造影剂等应用。本文简要概述了这一证据,以及体内铁蛋白结构和这些结构中隧道的证据,重点介绍了黑质致密部(SNc)神经元中的铁蛋白结构。还讨论了利用这些铁蛋白蛋白质纳米颗粒的潜在生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron Tunneling in Ferritin and Associated Biosystems
Ferritin is a 12 nanometer (nm) diameter iron storage protein complex that is found in most plants and animals. A substantial body of evidence has established that electrons can tunnel through and between ferritin protein nanoparticles and that it exhibits Coulomb blockade behavior, which is also seen in quantum dots and nanoparticles. This evidence can be used to understand the behavior of these particles for use in nanoelectronic devices, for biomedical applications and for investigation of quantum biological phenomena. Ferritin also has magnetic properties that make it useful for applications such as memristors and as a contrast agent for magnetic resonance imaging. This article provides a short overview of this evidence, as well as evidence of ferritin structures in vivo and of tunneling in those structures, with an emphasis on ferritin structures in substantia nigra pars compacta (SNc) neurons. Potential biomedical applications that could utilize these ferritin protein nanoparticles are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信