基于多层实验模型的电子束熔化件固有应变分析

Q3 Materials Science
S. Tadano, Y. Nakatani, T. Hino, Haruki Ohnishi, Daisuke Tsuji, Tooru Tanaka
{"title":"基于多层实验模型的电子束熔化件固有应变分析","authors":"S. Tadano, Y. Nakatani, T. Hino, Haruki Ohnishi, Daisuke Tsuji, Tooru Tanaka","doi":"10.2207/QJJWS.39.1","DOIUrl":null,"url":null,"abstract":"In additive manufacturing of metal products, predicting deformations induced during the process is indispensable for improving the quality of the products and reducing the post-process machining time. Finite element analysis (FEA) based on the inherent strain method using a voxel mesh is an effective prediction method due to its reasonable analysis time, and to efficiently implement the prediction, a method of easily and accurately defining the inherent strain value is required. In this study, an analysis method based on multi-layer model theory was proposed to evaluate the inherent strain applicable to electron beam melting. The inherent strains obtained by the analysis were - 0.835% and - 3.42% for 12Cr steel and Co alloy, respectively. As a verification result using the FEA based on the analyzed inherent strain, the out-of-plane deformation of the base plate and the thickness of the manufactured parts were evaluated with accuracies of ± 2.0mm and ± 0.5mm, respectively.","PeriodicalId":39980,"journal":{"name":"Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inherent Strain Analysis Using Experimental Multi-layer Model for Electron-Beam-Melted Parts\",\"authors\":\"S. Tadano, Y. Nakatani, T. Hino, Haruki Ohnishi, Daisuke Tsuji, Tooru Tanaka\",\"doi\":\"10.2207/QJJWS.39.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In additive manufacturing of metal products, predicting deformations induced during the process is indispensable for improving the quality of the products and reducing the post-process machining time. Finite element analysis (FEA) based on the inherent strain method using a voxel mesh is an effective prediction method due to its reasonable analysis time, and to efficiently implement the prediction, a method of easily and accurately defining the inherent strain value is required. In this study, an analysis method based on multi-layer model theory was proposed to evaluate the inherent strain applicable to electron beam melting. The inherent strains obtained by the analysis were - 0.835% and - 3.42% for 12Cr steel and Co alloy, respectively. As a verification result using the FEA based on the analyzed inherent strain, the out-of-plane deformation of the base plate and the thickness of the manufactured parts were evaluated with accuracies of ± 2.0mm and ± 0.5mm, respectively.\",\"PeriodicalId\":39980,\"journal\":{\"name\":\"Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2207/QJJWS.39.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.39.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

摘要

在金属产品增材制造中,预测增材制造过程中产生的变形是提高产品质量和缩短后处理加工时间的必要条件。基于体素网格固有应变法的有限元分析由于其分析时间合理,是一种有效的预测方法,而为了有效地实现预测,需要一种易于准确定义固有应变值的方法。本文提出了一种基于多层模型理论的分析方法来评估电子束熔化过程中的固有应变。12Cr钢和Co合金的固有应变分别为- 0.835%和- 3.42%。基于所分析的固有应变进行有限元分析验证,得到的底板面外变形和制件厚度的计算精度分别为±2.0mm和±0.5mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inherent Strain Analysis Using Experimental Multi-layer Model for Electron-Beam-Melted Parts
In additive manufacturing of metal products, predicting deformations induced during the process is indispensable for improving the quality of the products and reducing the post-process machining time. Finite element analysis (FEA) based on the inherent strain method using a voxel mesh is an effective prediction method due to its reasonable analysis time, and to efficiently implement the prediction, a method of easily and accurately defining the inherent strain value is required. In this study, an analysis method based on multi-layer model theory was proposed to evaluate the inherent strain applicable to electron beam melting. The inherent strains obtained by the analysis were - 0.835% and - 3.42% for 12Cr steel and Co alloy, respectively. As a verification result using the FEA based on the analyzed inherent strain, the out-of-plane deformation of the base plate and the thickness of the manufactured parts were evaluated with accuracies of ± 2.0mm and ± 0.5mm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信