生物化学信息通信技术客座编辑特辑:生物/纳米技术与分子通信之间的协同作用

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Murat Kuscu;Pasquale Stano;Malcolm Egan;Michael T. Barros;Bige Deniz Unluturk;Gregory F. Payne
{"title":"生物化学信息通信技术客座编辑特辑:生物/纳米技术与分子通信之间的协同作用","authors":"Murat Kuscu;Pasquale Stano;Malcolm Egan;Michael T. Barros;Bige Deniz Unluturk;Gregory F. Payne","doi":"10.1109/TMBMC.2023.3309488","DOIUrl":null,"url":null,"abstract":"The Transfer of ‘information’ via molecules is a theme that resonates across the realm of nature, underlying collective behavior, homeostasis, and many disorders and diseases, and potentially holding the answers to some of the life’s most profound questions. The prospects of understanding and manipulating this natural modality of communication have attracted a significant research interest from information and communication theorists (ICT) over the past two decades. The aim is to provide novel means of understanding and engineering biological systems. These efforts have produced substantial body of literature that sets the groundwork for bio-inspired, artificial Molecular Communication (MC) systems. This ICT-based perspective has also contributed to the understanding of natural MC, with many of the results from these endeavors being published in this journal.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10255331/10255347.pdf","citationCount":"0","resultStr":"{\"title\":\"Guest Editorial Special Feature on Bio-Chem-ICTs: Synergies Between Bio/Nanotechnologies and Molecular Communications\",\"authors\":\"Murat Kuscu;Pasquale Stano;Malcolm Egan;Michael T. Barros;Bige Deniz Unluturk;Gregory F. Payne\",\"doi\":\"10.1109/TMBMC.2023.3309488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Transfer of ‘information’ via molecules is a theme that resonates across the realm of nature, underlying collective behavior, homeostasis, and many disorders and diseases, and potentially holding the answers to some of the life’s most profound questions. The prospects of understanding and manipulating this natural modality of communication have attracted a significant research interest from information and communication theorists (ICT) over the past two decades. The aim is to provide novel means of understanding and engineering biological systems. These efforts have produced substantial body of literature that sets the groundwork for bio-inspired, artificial Molecular Communication (MC) systems. This ICT-based perspective has also contributed to the understanding of natural MC, with many of the results from these endeavors being published in this journal.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6687308/10255331/10255347.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10255347/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10255347/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

通过分子传递“信息”是一个在自然界、潜在的集体行为、体内平衡和许多疾病领域引起共鸣的主题,并可能为生活中一些最深刻的问题找到答案。在过去的二十年里,理解和操纵这种自然的通信方式的前景吸引了信息和通信理论家的极大研究兴趣。其目的是提供理解和工程化生物系统的新方法。这些努力产生了大量的文献,为生物启发的人工分子通信(MC)系统奠定了基础。这种基于信息和通信技术的观点也有助于理解自然MC,这些努力的许多结果发表在本杂志上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guest Editorial Special Feature on Bio-Chem-ICTs: Synergies Between Bio/Nanotechnologies and Molecular Communications
The Transfer of ‘information’ via molecules is a theme that resonates across the realm of nature, underlying collective behavior, homeostasis, and many disorders and diseases, and potentially holding the answers to some of the life’s most profound questions. The prospects of understanding and manipulating this natural modality of communication have attracted a significant research interest from information and communication theorists (ICT) over the past two decades. The aim is to provide novel means of understanding and engineering biological systems. These efforts have produced substantial body of literature that sets the groundwork for bio-inspired, artificial Molecular Communication (MC) systems. This ICT-based perspective has also contributed to the understanding of natural MC, with many of the results from these endeavors being published in this journal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信