{"title":"m-MSC:基于分子通讯的细胞因子风暴MSC控制治疗分析","authors":"Saswati Pal;Sudip Misra;Nabiul Islam","doi":"10.1109/TMBMC.2023.3296430","DOIUrl":null,"url":null,"abstract":"COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m-MSC: Molecular Communication-Based Analysis for Controlled MSC Treatment of Cytokine Storm\",\"authors\":\"Saswati Pal;Sudip Misra;Nabiul Islam\",\"doi\":\"10.1109/TMBMC.2023.3296430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10186007/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10186007/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
m-MSC: Molecular Communication-Based Analysis for Controlled MSC Treatment of Cytokine Storm
COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.