一种基于IFWA-BSA的云计算任务调度方法

Q3 Decision Sciences
Xiaoxia Li
{"title":"一种基于IFWA-BSA的云计算任务调度方法","authors":"Xiaoxia Li","doi":"10.13052/jicts2245-800X.1113","DOIUrl":null,"url":null,"abstract":"Establishing an efficient cloud computing task scheduling model is the object of many scholars' research. In view of the low scheduling efficiency in cloud computing task scheduling, we propose a cloud computing task scheduling algorithm based on the fusion of the Fireworks Algorithm and Bird Swarm Algorithm (IFWA-BSA). Firstly, we describe the cloud computing task scheduling model based on time and cost constraint functions, secondly, we use chaotic backward learning and Coasean distribution for optimization in FWA initialization; we set thresholds for the radius of core fireworks and non-core fireworks for optimization; we filter the IFWA individuals after each iteration by BSA algorithm, and finally, we use the IFWA-BSA algorithm is used in cloud computing task scheduling model to solve the optimal solution. In the simulation experiments, IFWA-BSA has obvious advantages over ACO, PSO and FWA in the comparison of execution time and consumption cost indexes, which reduces the scheduling time and cost of cloud computing.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"11 1","pages":"45-66"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10251929/10261463/10261464.pdf","citationCount":"2","resultStr":"{\"title\":\"An IFWA-BSA Based Approach for Task Scheduling in Cloud Computing\",\"authors\":\"Xiaoxia Li\",\"doi\":\"10.13052/jicts2245-800X.1113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing an efficient cloud computing task scheduling model is the object of many scholars' research. In view of the low scheduling efficiency in cloud computing task scheduling, we propose a cloud computing task scheduling algorithm based on the fusion of the Fireworks Algorithm and Bird Swarm Algorithm (IFWA-BSA). Firstly, we describe the cloud computing task scheduling model based on time and cost constraint functions, secondly, we use chaotic backward learning and Coasean distribution for optimization in FWA initialization; we set thresholds for the radius of core fireworks and non-core fireworks for optimization; we filter the IFWA individuals after each iteration by BSA algorithm, and finally, we use the IFWA-BSA algorithm is used in cloud computing task scheduling model to solve the optimal solution. In the simulation experiments, IFWA-BSA has obvious advantages over ACO, PSO and FWA in the comparison of execution time and consumption cost indexes, which reduces the scheduling time and cost of cloud computing.\",\"PeriodicalId\":36697,\"journal\":{\"name\":\"Journal of ICT Standardization\",\"volume\":\"11 1\",\"pages\":\"45-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/10251929/10261463/10261464.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Standardization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10261464/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10261464/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

建立一个高效的云计算任务调度模型是许多学者研究的对象。针对云计算任务调度效率低的问题,提出了一种基于烟花算法和鸟群算法(IFWA-BSA)融合的云计算任务排序算法。首先,我们描述了基于时间和成本约束函数的云计算任务调度模型,其次,我们在FWA初始化中使用混沌后向学习和科斯分布进行优化;我们设置了核心烟花和非核心烟花的半径阈值进行优化;我们使用BSA算法对每次迭代后的IFWA个体进行过滤,最后将IFWA-BSA算法用于云计算任务调度模型中求解最优解。在仿真实验中,IFWA-BSA在执行时间和消耗成本指标的比较上比ACO、PSO和FWA具有明显的优势,降低了云计算的调度时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An IFWA-BSA Based Approach for Task Scheduling in Cloud Computing
Establishing an efficient cloud computing task scheduling model is the object of many scholars' research. In view of the low scheduling efficiency in cloud computing task scheduling, we propose a cloud computing task scheduling algorithm based on the fusion of the Fireworks Algorithm and Bird Swarm Algorithm (IFWA-BSA). Firstly, we describe the cloud computing task scheduling model based on time and cost constraint functions, secondly, we use chaotic backward learning and Coasean distribution for optimization in FWA initialization; we set thresholds for the radius of core fireworks and non-core fireworks for optimization; we filter the IFWA individuals after each iteration by BSA algorithm, and finally, we use the IFWA-BSA algorithm is used in cloud computing task scheduling model to solve the optimal solution. In the simulation experiments, IFWA-BSA has obvious advantages over ACO, PSO and FWA in the comparison of execution time and consumption cost indexes, which reduces the scheduling time and cost of cloud computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of ICT Standardization
Journal of ICT Standardization Computer Science-Information Systems
CiteScore
2.20
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信