{"title":"用稀磁半导体制成的低势垒纳米磁体实现二元随机神经元的鲁棒性","authors":"Rahnuma Rahman;Supriyo Bandyopadhyay","doi":"10.1109/LMAG.2022.3202135","DOIUrl":null,"url":null,"abstract":"Binary stochastic neurons (BSNs) are excellent hardware accelerators for machine learning. A popular platform for implementing them is low- or zero-energy barrier nanomagnets possessing in-plane magnetic anisotropy (e.g., circular disks or quasi-elliptical disks with very small eccentricity). Unfortunately, small geometric variations in the lateral shapes of such nanomagnets can produce large changes in the BSN response times if the nanomagnets are made of common metallic ferromagnets (Co, Ni, Fe) with large saturation magnetization. In addition, the response times become very sensitive to initial conditions, i.e., the initial magnetization orientation. In this letter, we show that if the nanomagnets are made of dilute magnetic semiconductors with much smaller saturation magnetization than common metallic ferromagnets, then the variability in their response times (due to shape variations and variation in the initial condition) is drastically suppressed. This significantly reduces the device-to-device variation, which is a serious challenge for large-scale neuromorphic systems. A simple material choice can, therefore, alleviate one of the most aggravating problems in probabilistic computing with nanomagnets.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robustness of Binary Stochastic Neurons Implemented With Low Barrier Nanomagnets Made of Dilute Magnetic Semiconductors\",\"authors\":\"Rahnuma Rahman;Supriyo Bandyopadhyay\",\"doi\":\"10.1109/LMAG.2022.3202135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary stochastic neurons (BSNs) are excellent hardware accelerators for machine learning. A popular platform for implementing them is low- or zero-energy barrier nanomagnets possessing in-plane magnetic anisotropy (e.g., circular disks or quasi-elliptical disks with very small eccentricity). Unfortunately, small geometric variations in the lateral shapes of such nanomagnets can produce large changes in the BSN response times if the nanomagnets are made of common metallic ferromagnets (Co, Ni, Fe) with large saturation magnetization. In addition, the response times become very sensitive to initial conditions, i.e., the initial magnetization orientation. In this letter, we show that if the nanomagnets are made of dilute magnetic semiconductors with much smaller saturation magnetization than common metallic ferromagnets, then the variability in their response times (due to shape variations and variation in the initial condition) is drastically suppressed. This significantly reduces the device-to-device variation, which is a serious challenge for large-scale neuromorphic systems. A simple material choice can, therefore, alleviate one of the most aggravating problems in probabilistic computing with nanomagnets.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9868146/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9868146/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Robustness of Binary Stochastic Neurons Implemented With Low Barrier Nanomagnets Made of Dilute Magnetic Semiconductors
Binary stochastic neurons (BSNs) are excellent hardware accelerators for machine learning. A popular platform for implementing them is low- or zero-energy barrier nanomagnets possessing in-plane magnetic anisotropy (e.g., circular disks or quasi-elliptical disks with very small eccentricity). Unfortunately, small geometric variations in the lateral shapes of such nanomagnets can produce large changes in the BSN response times if the nanomagnets are made of common metallic ferromagnets (Co, Ni, Fe) with large saturation magnetization. In addition, the response times become very sensitive to initial conditions, i.e., the initial magnetization orientation. In this letter, we show that if the nanomagnets are made of dilute magnetic semiconductors with much smaller saturation magnetization than common metallic ferromagnets, then the variability in their response times (due to shape variations and variation in the initial condition) is drastically suppressed. This significantly reduces the device-to-device variation, which is a serious challenge for large-scale neuromorphic systems. A simple material choice can, therefore, alleviate one of the most aggravating problems in probabilistic computing with nanomagnets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.