{"title":"新型高频变压器与碳化硅肖特基二极管的集成","authors":"Weichong Yao;Junwei Lu;Andrew Seagar;Feifei Bai;Foad Taghizadeh","doi":"10.1109/LMAG.2022.3229230","DOIUrl":null,"url":null,"abstract":"This letter presents a novel and compact structure that integrates silicon-carbide (SiC) Schottky diodes within a high-frequency transformer (HFT). The proposed structure would reduce the volume of a power converter and, in turn, the system to which it is applied. It would also greatly reduce the leakage inductances of an HFT as well as the inductive electromagnetic interference to surrounding components and devices. A prototype HFT shaped much like a torus is designed for integration with SiC Schottky diodes. The three-dimensional finite-element method simulation technique is used to design and analyze the magnetic structure of the HFT including the space reserved for the SiC Schottky diodes. Experimental results are presented for both the HFT as a separate component and as a system integrated with SiC Schottky diodes.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Novel High-Frequency Transformer With Silicon-Carbide Schottky Diodes\",\"authors\":\"Weichong Yao;Junwei Lu;Andrew Seagar;Feifei Bai;Foad Taghizadeh\",\"doi\":\"10.1109/LMAG.2022.3229230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a novel and compact structure that integrates silicon-carbide (SiC) Schottky diodes within a high-frequency transformer (HFT). The proposed structure would reduce the volume of a power converter and, in turn, the system to which it is applied. It would also greatly reduce the leakage inductances of an HFT as well as the inductive electromagnetic interference to surrounding components and devices. A prototype HFT shaped much like a torus is designed for integration with SiC Schottky diodes. The three-dimensional finite-element method simulation technique is used to design and analyze the magnetic structure of the HFT including the space reserved for the SiC Schottky diodes. Experimental results are presented for both the HFT as a separate component and as a system integrated with SiC Schottky diodes.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"13 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9984833/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9984833/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Integration of Novel High-Frequency Transformer With Silicon-Carbide Schottky Diodes
This letter presents a novel and compact structure that integrates silicon-carbide (SiC) Schottky diodes within a high-frequency transformer (HFT). The proposed structure would reduce the volume of a power converter and, in turn, the system to which it is applied. It would also greatly reduce the leakage inductances of an HFT as well as the inductive electromagnetic interference to surrounding components and devices. A prototype HFT shaped much like a torus is designed for integration with SiC Schottky diodes. The three-dimensional finite-element method simulation technique is used to design and analyze the magnetic structure of the HFT including the space reserved for the SiC Schottky diodes. Experimental results are presented for both the HFT as a separate component and as a system integrated with SiC Schottky diodes.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.