检测厚钢板表面和背面缺陷的高频交流漏磁检测

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gang Wang;Qi Xiao;Zihao Gao;Wenhui Li;Liang Jia;Ce Liang;Xue Yu
{"title":"检测厚钢板表面和背面缺陷的高频交流漏磁检测","authors":"Gang Wang;Qi Xiao;Zihao Gao;Wenhui Li;Liang Jia;Ce Liang;Xue Yu","doi":"10.1109/LMAG.2022.3142717","DOIUrl":null,"url":null,"abstract":"The detection of surface and backside defects in steel plates is essential for safety maintenance. Current ac magnetic flux leakage (ACMFL) testing systems generally operate at a high frequency but cannot detect backside defects owing to the skin effect. Low-frequency ACMFL is limited by low sensitivity and low efficiency in detecting deep defects. This letter presents a multifrequency ACMFL testing method combined with the merits of low- and high-frequency excitation to detect surface and backside defects. In early work, the optimal frequency for detecting the surface defect with a depth of 4 mm or less was 400 Hz. Through simulation analysis, the optimal low frequency for detecting backside defects is determined. Additionally, the influence of the excitation intensity on the response signal is investigated. Relatively small excitation power should be used to obtain a reliable detection waveform. Finally, the experimental results of surface and backside defects detection validated the practicality of the method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multifrequency AC Magnetic Flux Leakage Testing for the Detection of Surface and Backside Defects in Thick Steel Plates\",\"authors\":\"Gang Wang;Qi Xiao;Zihao Gao;Wenhui Li;Liang Jia;Ce Liang;Xue Yu\",\"doi\":\"10.1109/LMAG.2022.3142717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of surface and backside defects in steel plates is essential for safety maintenance. Current ac magnetic flux leakage (ACMFL) testing systems generally operate at a high frequency but cannot detect backside defects owing to the skin effect. Low-frequency ACMFL is limited by low sensitivity and low efficiency in detecting deep defects. This letter presents a multifrequency ACMFL testing method combined with the merits of low- and high-frequency excitation to detect surface and backside defects. In early work, the optimal frequency for detecting the surface defect with a depth of 4 mm or less was 400 Hz. Through simulation analysis, the optimal low frequency for detecting backside defects is determined. Additionally, the influence of the excitation intensity on the response signal is investigated. Relatively small excitation power should be used to obtain a reliable detection waveform. Finally, the experimental results of surface and backside defects detection validated the practicality of the method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9681215/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9681215/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

钢板表面和背面缺陷的检测对于安全维护至关重要。当前的交流磁通泄漏(ACMFL)测试系统通常在高频下操作,但由于趋肤效应而不能检测背面缺陷。低频ACMFL在检测深缺陷方面受到低灵敏度和低效率的限制。本文介绍了一种多频率ACMFL测试方法,结合低频和高频激励的优点来检测表面和背面缺陷。在早期工作中,检测深度为4mm或更小的表面缺陷的最佳频率为400Hz。通过仿真分析,确定了检测背面缺陷的最佳低频率。此外,还研究了激励强度对响应信号的影响。应该使用相对较小的激励功率来获得可靠的检测波形。最后,表面和背面缺陷检测的实验结果验证了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifrequency AC Magnetic Flux Leakage Testing for the Detection of Surface and Backside Defects in Thick Steel Plates
The detection of surface and backside defects in steel plates is essential for safety maintenance. Current ac magnetic flux leakage (ACMFL) testing systems generally operate at a high frequency but cannot detect backside defects owing to the skin effect. Low-frequency ACMFL is limited by low sensitivity and low efficiency in detecting deep defects. This letter presents a multifrequency ACMFL testing method combined with the merits of low- and high-frequency excitation to detect surface and backside defects. In early work, the optimal frequency for detecting the surface defect with a depth of 4 mm or less was 400 Hz. Through simulation analysis, the optimal low frequency for detecting backside defects is determined. Additionally, the influence of the excitation intensity on the response signal is investigated. Relatively small excitation power should be used to obtain a reliable detection waveform. Finally, the experimental results of surface and backside defects detection validated the practicality of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信