Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev
{"title":"GdH0.15的磁相变:磁热效应和磁致伸缩效应的一些特性","authors":"Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev","doi":"10.1109/LMAG.2022.3171089","DOIUrl":null,"url":null,"abstract":"The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH\n<sub>0.15</sub>\n was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH\n<sub>0.15</sub>\n due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants \n<inline-formula><tex-math>$\\lambda_{\\rm ij}^{\\alpha}$</tex-math></inline-formula>\n.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Phase Transitions in GdH0.15: Some Peculiarities in the Behavior of Magnetocaloric and Magnetostrictive Effects\",\"authors\":\"Galina A. Politova;Irina S. Tereshina;Evgenia A. Tereshina-Chitrova;Barbora Vondráčková;Jiří Pospíšil;Mikhail A. Paukov;Alexander V. Andreev\",\"doi\":\"10.1109/LMAG.2022.3171089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH\\n<sub>0.15</sub>\\n was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH\\n<sub>0.15</sub>\\n due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants \\n<inline-formula><tex-math>$\\\\lambda_{\\\\rm ij}^{\\\\alpha}$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"13 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9765352/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9765352/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Magnetic Phase Transitions in GdH0.15: Some Peculiarities in the Behavior of Magnetocaloric and Magnetostrictive Effects
The magnetocaloric effect (MCE) and anomalies of magnetostriction behavior were studied at the order-order and order-disorder magnetic phase transitions in hydrided Gd single crystal grown by a modified Czochralski method. The composition GdH
0.15
was obtained using a Sievert-type apparatus. While parent Gd shows an isotropic MCE at the order-disorder phase transition, the effect is anisotropic in GdH
0.15
due to the appearance of local anisotropy. We investigate in detail the temperature variation of the longitudinal, transverse, volume, and anisotropic magnetostriction. Hydrogenation is found to influence both the magnitude and the sign of the magnetostriction constants
$\lambda_{\rm ij}^{\alpha}$
.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.