Yuan Ma;Yuping Deng;Chao Xie;Bingjing Zhang;Boyu Shen;Milin Zhang;Lan Yin;Xilin Liu;Jan van der Spiegel
{"title":"生物传感器的电化学电极和读出接口设计综述","authors":"Yuan Ma;Yuping Deng;Chao Xie;Bingjing Zhang;Boyu Shen;Milin Zhang;Lan Yin;Xilin Liu;Jan van der Spiegel","doi":"10.1109/OJSSCS.2022.3221924","DOIUrl":null,"url":null,"abstract":"Electrochemical detection is widely used in biosensing fields, such as medical diagnosis and health monitoring due to its real-time response and high accuracy. Both passive and active electrodes and the corresponding readout circuits have been continuously improved over the past decades. This article summarizes the redox reaction method, state-of-the-art electrode materials, and readout circuits based on the passive three-electrode. The redox-current-based readout circuits are widely used and developed toward multichannel high precision and low power consumption. In terms of active electrodes, this article reviews the development of field-effect transistors (FETs)-based electrochemical detection and readout circuits. In the past decade, the development of organic electrochemical transistors (OECTs) has also enabled more precise electrochemical detection.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"76-88"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/09950234.pdf","citationCount":"1","resultStr":"{\"title\":\"A Review of Electrochemical Electrodes and Readout Interface Designs for Biosensors\",\"authors\":\"Yuan Ma;Yuping Deng;Chao Xie;Bingjing Zhang;Boyu Shen;Milin Zhang;Lan Yin;Xilin Liu;Jan van der Spiegel\",\"doi\":\"10.1109/OJSSCS.2022.3221924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical detection is widely used in biosensing fields, such as medical diagnosis and health monitoring due to its real-time response and high accuracy. Both passive and active electrodes and the corresponding readout circuits have been continuously improved over the past decades. This article summarizes the redox reaction method, state-of-the-art electrode materials, and readout circuits based on the passive three-electrode. The redox-current-based readout circuits are widely used and developed toward multichannel high precision and low power consumption. In terms of active electrodes, this article reviews the development of field-effect transistors (FETs)-based electrochemical detection and readout circuits. In the past decade, the development of organic electrochemical transistors (OECTs) has also enabled more precise electrochemical detection.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"3 \",\"pages\":\"76-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/10019316/09950234.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9950234/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9950234/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Review of Electrochemical Electrodes and Readout Interface Designs for Biosensors
Electrochemical detection is widely used in biosensing fields, such as medical diagnosis and health monitoring due to its real-time response and high accuracy. Both passive and active electrodes and the corresponding readout circuits have been continuously improved over the past decades. This article summarizes the redox reaction method, state-of-the-art electrode materials, and readout circuits based on the passive three-electrode. The redox-current-based readout circuits are widely used and developed toward multichannel high precision and low power consumption. In terms of active electrodes, this article reviews the development of field-effect transistors (FETs)-based electrochemical detection and readout circuits. In the past decade, the development of organic electrochemical transistors (OECTs) has also enabled more precise electrochemical detection.