Kaushik Sengupta;Lingyu Hong;Chengjie Zhu;Xuyang Lu
{"title":"CMOS中的可见光和近红外纳米光学元件和系统","authors":"Kaushik Sengupta;Lingyu Hong;Chengjie Zhu;Xuyang Lu","doi":"10.1109/OJSSCS.2021.3116563","DOIUrl":null,"url":null,"abstract":"Integration of complex optical systems operating in the visible and near-IR range (VIS/NIR), realized in a CMOS fabrication process in an absolutely ‘no change’ approach, can have a transformative impact in enabling a new class of miniaturized, low-cost, smart optical sensors and imagers for emerging applications. While ‘silicon photonics’ has demonstrated the path towards such advancements in the IR range, the field of VIS/NIR integrated optics has seen less progress. Therefore, while currently ultra high-density and higher performance image sensors are commonplace in CMOS, all passive optical components (such as lenses, filters, gratings, collimators) that typically constitute a high-performance sensing or imaging system, are non-integrated, bulky and expensive, severely limiting their application domains. Here, we present an approach to utilize the embedded copper-based metal interconnect layers in modern CMOS processes with sub-wavelength feature sizes to realize multi-functional nano-optical structures and components. Based on our prior works, we illustrate this electronic-photonic co-design approach exploiting metal/light interactions and integrated electronics in the 400nm-900 nm wavelengths with three design examples. Realized in 65-nm CMOS, these demonstrate for the first time: fully integrated multiplexed fluorescence based biosensors with integrated filters, optical spectrometer, and CMOS optical physically unclonable function (PUF). These examples cover a range of optical processing elements in silicon, from deep sub-wavelength nano-optics to diffractive structures. We will demonstrate that when co-designed with embedded photo-detection and signal processing circuitry, this approach can lead to a new class of millimeter-scale, intelligent optical sensors for a wide range of emerging applications in healthcare, diagnostics, smart sensing, food, air quality, environment monitoring and others.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"1 ","pages":"247-262"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/8816720/09552953.pdf","citationCount":"2","resultStr":"{\"title\":\"Visible and Near-IR Nano-Optical Components and Systems in CMOS\",\"authors\":\"Kaushik Sengupta;Lingyu Hong;Chengjie Zhu;Xuyang Lu\",\"doi\":\"10.1109/OJSSCS.2021.3116563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integration of complex optical systems operating in the visible and near-IR range (VIS/NIR), realized in a CMOS fabrication process in an absolutely ‘no change’ approach, can have a transformative impact in enabling a new class of miniaturized, low-cost, smart optical sensors and imagers for emerging applications. While ‘silicon photonics’ has demonstrated the path towards such advancements in the IR range, the field of VIS/NIR integrated optics has seen less progress. Therefore, while currently ultra high-density and higher performance image sensors are commonplace in CMOS, all passive optical components (such as lenses, filters, gratings, collimators) that typically constitute a high-performance sensing or imaging system, are non-integrated, bulky and expensive, severely limiting their application domains. Here, we present an approach to utilize the embedded copper-based metal interconnect layers in modern CMOS processes with sub-wavelength feature sizes to realize multi-functional nano-optical structures and components. Based on our prior works, we illustrate this electronic-photonic co-design approach exploiting metal/light interactions and integrated electronics in the 400nm-900 nm wavelengths with three design examples. Realized in 65-nm CMOS, these demonstrate for the first time: fully integrated multiplexed fluorescence based biosensors with integrated filters, optical spectrometer, and CMOS optical physically unclonable function (PUF). These examples cover a range of optical processing elements in silicon, from deep sub-wavelength nano-optics to diffractive structures. We will demonstrate that when co-designed with embedded photo-detection and signal processing circuitry, this approach can lead to a new class of millimeter-scale, intelligent optical sensors for a wide range of emerging applications in healthcare, diagnostics, smart sensing, food, air quality, environment monitoring and others.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"1 \",\"pages\":\"247-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/8816720/09552953.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9552953/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9552953/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visible and Near-IR Nano-Optical Components and Systems in CMOS
Integration of complex optical systems operating in the visible and near-IR range (VIS/NIR), realized in a CMOS fabrication process in an absolutely ‘no change’ approach, can have a transformative impact in enabling a new class of miniaturized, low-cost, smart optical sensors and imagers for emerging applications. While ‘silicon photonics’ has demonstrated the path towards such advancements in the IR range, the field of VIS/NIR integrated optics has seen less progress. Therefore, while currently ultra high-density and higher performance image sensors are commonplace in CMOS, all passive optical components (such as lenses, filters, gratings, collimators) that typically constitute a high-performance sensing or imaging system, are non-integrated, bulky and expensive, severely limiting their application domains. Here, we present an approach to utilize the embedded copper-based metal interconnect layers in modern CMOS processes with sub-wavelength feature sizes to realize multi-functional nano-optical structures and components. Based on our prior works, we illustrate this electronic-photonic co-design approach exploiting metal/light interactions and integrated electronics in the 400nm-900 nm wavelengths with three design examples. Realized in 65-nm CMOS, these demonstrate for the first time: fully integrated multiplexed fluorescence based biosensors with integrated filters, optical spectrometer, and CMOS optical physically unclonable function (PUF). These examples cover a range of optical processing elements in silicon, from deep sub-wavelength nano-optics to diffractive structures. We will demonstrate that when co-designed with embedded photo-detection and signal processing circuitry, this approach can lead to a new class of millimeter-scale, intelligent optical sensors for a wide range of emerging applications in healthcare, diagnostics, smart sensing, food, air quality, environment monitoring and others.