光学ADC及其在光通信中的应用

Andrea Zazzi;Juliana Müller;Maxim Weizel;Jonas Koch;Dengyang Fang;Alvaro Moscoso-Mártir;Ali Tabatabaei Mashayekh;Arka D. Das;Daniel Drayß;Florian Merget;Franz X. Kärtner;Stephan Pachnicke;Christian Koos;J. Christoph Scheytt;Jeremy Witzens
{"title":"光学ADC及其在光通信中的应用","authors":"Andrea Zazzi;Juliana Müller;Maxim Weizel;Jonas Koch;Dengyang Fang;Alvaro Moscoso-Mártir;Ali Tabatabaei Mashayekh;Arka D. Das;Daniel Drayß;Florian Merget;Franz X. Kärtner;Stephan Pachnicke;Christian Koos;J. Christoph Scheytt;Jeremy Witzens","doi":"10.1109/OJSSCS.2021.3110943","DOIUrl":null,"url":null,"abstract":"Electrical-optical signal processing has been shown to be a promising path to overcome the limitations of state-of-the-art all-electrical data converters. In addition to ultra-broadband signal processing, it allows leveraging ultra-low jitter mode-locked lasers and thus increasing the aperture jitter limited effective number of bits at high analog signal frequencies. In this paper, we review our recent progress towards optically enabled time- and frequency-interleaved analog-to-digital converters, as well as their monolithic integration in electronic-photonic integrated circuits. For signal frequencies up to 65 GHz, an optoelectronic track-and-hold amplifier based on the source-emitter-follower architecture is shown as a power efficient approach in optically enabled BiCMOS technology. At higher signal frequencies, integrated photonic filters enable signal slicing in the frequency domain and further scaling of the conversion bandwidth, with the reconstruction of a 140 GHz optical signal being shown. We further show how such optically enabled data converter architectures can be applied to a nonlinear Fourier transform based integrated transceiver in particular and discuss their applicability to broadband optical links in general.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"1 ","pages":"209-221"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/8816720/09530562.pdf","citationCount":"5","resultStr":"{\"title\":\"Optically Enabled ADCs and Application to Optical Communications\",\"authors\":\"Andrea Zazzi;Juliana Müller;Maxim Weizel;Jonas Koch;Dengyang Fang;Alvaro Moscoso-Mártir;Ali Tabatabaei Mashayekh;Arka D. Das;Daniel Drayß;Florian Merget;Franz X. Kärtner;Stephan Pachnicke;Christian Koos;J. Christoph Scheytt;Jeremy Witzens\",\"doi\":\"10.1109/OJSSCS.2021.3110943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical-optical signal processing has been shown to be a promising path to overcome the limitations of state-of-the-art all-electrical data converters. In addition to ultra-broadband signal processing, it allows leveraging ultra-low jitter mode-locked lasers and thus increasing the aperture jitter limited effective number of bits at high analog signal frequencies. In this paper, we review our recent progress towards optically enabled time- and frequency-interleaved analog-to-digital converters, as well as their monolithic integration in electronic-photonic integrated circuits. For signal frequencies up to 65 GHz, an optoelectronic track-and-hold amplifier based on the source-emitter-follower architecture is shown as a power efficient approach in optically enabled BiCMOS technology. At higher signal frequencies, integrated photonic filters enable signal slicing in the frequency domain and further scaling of the conversion bandwidth, with the reconstruction of a 140 GHz optical signal being shown. We further show how such optically enabled data converter architectures can be applied to a nonlinear Fourier transform based integrated transceiver in particular and discuss their applicability to broadband optical links in general.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"1 \",\"pages\":\"209-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/8816720/09530562.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9530562/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9530562/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

电光信号处理已被证明是克服最先进的全电数据转换器的局限性的一条很有前途的途径。除了超宽带信号处理外,它还允许利用超低抖动锁模激光器,从而在高模拟信号频率下增加孔径抖动有限的有效位数。在本文中,我们回顾了我们在光学时间和频率交错模数转换器方面的最新进展,以及它们在电子光子集成电路中的单片集成。对于高达65GHz的信号频率,基于源极-发射极跟随器架构的光电跟踪保持放大器被显示为光学使能BiCMOS技术中的功率高效方法。在更高的信号频率下,集成光子滤波器能够在频域中进行信号切片,并进一步缩放转换带宽,其中显示了140GHz光信号的重建。我们进一步展示了这种光学启用的数据转换器架构如何特别应用于基于非线性傅立叶变换的集成收发器,并讨论了它们对宽带光链路的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optically Enabled ADCs and Application to Optical Communications
Electrical-optical signal processing has been shown to be a promising path to overcome the limitations of state-of-the-art all-electrical data converters. In addition to ultra-broadband signal processing, it allows leveraging ultra-low jitter mode-locked lasers and thus increasing the aperture jitter limited effective number of bits at high analog signal frequencies. In this paper, we review our recent progress towards optically enabled time- and frequency-interleaved analog-to-digital converters, as well as their monolithic integration in electronic-photonic integrated circuits. For signal frequencies up to 65 GHz, an optoelectronic track-and-hold amplifier based on the source-emitter-follower architecture is shown as a power efficient approach in optically enabled BiCMOS technology. At higher signal frequencies, integrated photonic filters enable signal slicing in the frequency domain and further scaling of the conversion bandwidth, with the reconstruction of a 140 GHz optical signal being shown. We further show how such optically enabled data converter architectures can be applied to a nonlinear Fourier transform based integrated transceiver in particular and discuss their applicability to broadband optical links in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信