{"title":"关于的格平铺ℤn由有限大小误差球B(n,2,1,1)","authors":"Tao Zhang;Yanlu Lian;Gennian Ge","doi":"10.1109/TIT.2023.3301669","DOIUrl":null,"url":null,"abstract":"Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of \n<inline-formula> <tex-math>$\\mathbb {Z}^{n}$ </tex-math></inline-formula>\n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of \n<inline-formula> <tex-math>$\\mathbb {Z}^{n}$ </tex-math></inline-formula>\n by limited magnitude error balls \n<inline-formula> <tex-math>$\\mathcal {B}(n,2,1,1)$ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"69 11","pages":"7110-7121"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Lattice Tilings of ℤn by Limited Magnitude Error Balls B(n, 2, 1, 1)\",\"authors\":\"Tao Zhang;Yanlu Lian;Gennian Ge\",\"doi\":\"10.1109/TIT.2023.3301669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of \\n<inline-formula> <tex-math>$\\\\mathbb {Z}^{n}$ </tex-math></inline-formula>\\n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of \\n<inline-formula> <tex-math>$\\\\mathbb {Z}^{n}$ </tex-math></inline-formula>\\n by limited magnitude error balls \\n<inline-formula> <tex-math>$\\\\mathcal {B}(n,2,1,1)$ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"69 11\",\"pages\":\"7110-7121\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10207825/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10207825/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
On Lattice Tilings of ℤn by Limited Magnitude Error Balls B(n, 2, 1, 1)
Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of
$\mathbb {Z}^{n}$
by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of
$\mathbb {Z}^{n}$
by limited magnitude error balls
$\mathcal {B}(n,2,1,1)$
.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.