{"title":"Kodaira可加性,两族等平凡性和特殊性","authors":"Frédéric Campana","doi":"10.17323/1609-4514-2023-23-3-319-330","DOIUrl":null,"url":null,"abstract":". We show, using [14], that a smooth projective fibration f : X → Y between connected complex quasi-projective manifolds satisfies the equality κ ( X ) = κ ( X y ) + κ ( Y ) of Logarithmic Kodaira dimensions if its fibres X y admit a good minimal model. Without the last assumption, this was conjectured in [11]. Sev-eral cases are established in [13], which inspired the present text. Although the present results overlap with those of [13] in the projective case, the approach here is different, based on the rôle played by birationally isotrivial fibrations, special manifolds and the core map of Y introduced and constructed in [3].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kodaira Additivity, Birational Isotriviality, and Specialness\",\"authors\":\"Frédéric Campana\",\"doi\":\"10.17323/1609-4514-2023-23-3-319-330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We show, using [14], that a smooth projective fibration f : X → Y between connected complex quasi-projective manifolds satisfies the equality κ ( X ) = κ ( X y ) + κ ( Y ) of Logarithmic Kodaira dimensions if its fibres X y admit a good minimal model. Without the last assumption, this was conjectured in [11]. Sev-eral cases are established in [13], which inspired the present text. Although the present results overlap with those of [13] in the projective case, the approach here is different, based on the rôle played by birationally isotrivial fibrations, special manifolds and the core map of Y introduced and constructed in [3].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2023-23-3-319-330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-3-319-330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kodaira Additivity, Birational Isotriviality, and Specialness
. We show, using [14], that a smooth projective fibration f : X → Y between connected complex quasi-projective manifolds satisfies the equality κ ( X ) = κ ( X y ) + κ ( Y ) of Logarithmic Kodaira dimensions if its fibres X y admit a good minimal model. Without the last assumption, this was conjectured in [11]. Sev-eral cases are established in [13], which inspired the present text. Although the present results overlap with those of [13] in the projective case, the approach here is different, based on the rôle played by birationally isotrivial fibrations, special manifolds and the core map of Y introduced and constructed in [3].