Kodaira可加性,两族等平凡性和特殊性

Frédéric Campana
{"title":"Kodaira可加性,两族等平凡性和特殊性","authors":"Frédéric Campana","doi":"10.17323/1609-4514-2023-23-3-319-330","DOIUrl":null,"url":null,"abstract":". We show, using [14], that a smooth projective fibration f : X → Y between connected complex quasi-projective manifolds satisfies the equality κ ( X ) = κ ( X y ) + κ ( Y ) of Logarithmic Kodaira dimensions if its fibres X y admit a good minimal model. Without the last assumption, this was conjectured in [11]. Sev-eral cases are established in [13], which inspired the present text. Although the present results overlap with those of [13] in the projective case, the approach here is different, based on the rôle played by birationally isotrivial fibrations, special manifolds and the core map of Y introduced and constructed in [3].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kodaira Additivity, Birational Isotriviality, and Specialness\",\"authors\":\"Frédéric Campana\",\"doi\":\"10.17323/1609-4514-2023-23-3-319-330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We show, using [14], that a smooth projective fibration f : X → Y between connected complex quasi-projective manifolds satisfies the equality κ ( X ) = κ ( X y ) + κ ( Y ) of Logarithmic Kodaira dimensions if its fibres X y admit a good minimal model. Without the last assumption, this was conjectured in [11]. Sev-eral cases are established in [13], which inspired the present text. Although the present results overlap with those of [13] in the projective case, the approach here is different, based on the rôle played by birationally isotrivial fibrations, special manifolds and the core map of Y introduced and constructed in [3].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2023-23-3-319-330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-3-319-330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 我们利用[14]证明了在连通的复拟射影流形之间的光滑射影纤维f: X→Y满足对数Kodaira维数的等式κ (X) = κ (X Y) + κ (Y),如果它的纤维X Y允许一个好的极小模型。在没有最后一个假设的情况下,这是在1960年推测出来的。在b[13]中建立了几个案例,对本文有启发。虽然目前的结果与[13]在投影情况下的结果重叠,但这里的方法是不同的,基于在[3]中引入和构建的双等平凡纤维,特殊流形和Y的核心映射所发挥的rôle。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kodaira Additivity, Birational Isotriviality, and Specialness
. We show, using [14], that a smooth projective fibration f : X → Y between connected complex quasi-projective manifolds satisfies the equality κ ( X ) = κ ( X y ) + κ ( Y ) of Logarithmic Kodaira dimensions if its fibres X y admit a good minimal model. Without the last assumption, this was conjectured in [11]. Sev-eral cases are established in [13], which inspired the present text. Although the present results overlap with those of [13] in the projective case, the approach here is different, based on the rôle played by birationally isotrivial fibrations, special manifolds and the core map of Y introduced and constructed in [3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信