{"title":"超图矩阵模型","authors":"Mario DeFranco DeFranco, P. Gunnells","doi":"10.17323/1609-4514-2021-21-4-737-766","DOIUrl":null,"url":null,"abstract":"The classical GUE matrix model of N×N Hermitian matrices equipped with the Gaussian measure can be used to count the orientable topological surfaces by genus obtained through gluing the edges of a polygon. We introduce a variation of the GUE matrix model that that enumerates certain edge-ramified CW complexes obtained from polygon gluings. We do this by replacing the Gaussian measure with a formal analogue related to generating functions that enumerate uniform hypergraphs. Our main results are three different ways to compute expectations of traces of powers. In particular, we show that our matrix model has a topological expansion.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hypergraph Matrix Models\",\"authors\":\"Mario DeFranco DeFranco, P. Gunnells\",\"doi\":\"10.17323/1609-4514-2021-21-4-737-766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical GUE matrix model of N×N Hermitian matrices equipped with the Gaussian measure can be used to count the orientable topological surfaces by genus obtained through gluing the edges of a polygon. We introduce a variation of the GUE matrix model that that enumerates certain edge-ramified CW complexes obtained from polygon gluings. We do this by replacing the Gaussian measure with a formal analogue related to generating functions that enumerate uniform hypergraphs. Our main results are three different ways to compute expectations of traces of powers. In particular, we show that our matrix model has a topological expansion.\",\"PeriodicalId\":54736,\"journal\":{\"name\":\"Moscow Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2021-21-4-737-766\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-4-737-766","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The classical GUE matrix model of N×N Hermitian matrices equipped with the Gaussian measure can be used to count the orientable topological surfaces by genus obtained through gluing the edges of a polygon. We introduce a variation of the GUE matrix model that that enumerates certain edge-ramified CW complexes obtained from polygon gluings. We do this by replacing the Gaussian measure with a formal analogue related to generating functions that enumerate uniform hypergraphs. Our main results are three different ways to compute expectations of traces of powers. In particular, we show that our matrix model has a topological expansion.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.