利用机器学习设计的自旋波透镜的实验演示

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Martina Kiechle;Levente Maucha;Valentin Ahrens;Carsten Dubs;Wolfgang Porod;Gyorgy Csaba;Markus Becherer;Adam Papp
{"title":"利用机器学习设计的自旋波透镜的实验演示","authors":"Martina Kiechle;Levente Maucha;Valentin Ahrens;Carsten Dubs;Wolfgang Porod;Gyorgy Csaba;Markus Becherer;Adam Papp","doi":"10.1109/LMAG.2022.3209647","DOIUrl":null,"url":null,"abstract":"In this letter, we present the design and experimental realization of a device that acts like a spin-wave lens i.e., it focuses spin waves to a specified location. The structure of the lens does not resemble any conventional lens design. It is a nonintuitive pattern produced by a machine-learning algorithm. As a spin-wave design tool, we used our custom micromagnetic solver SpinTorch, which has built-in automatic gradient calculation and can perform backpropagation through time for spin-wave propagation. The training itself is performed with the saturation magnetization of a yttrium-iron-garnet (YIG) film as a variable parameter, with the goal to guide spin waves to a predefined location. We verified the operation of the device in the widely used mumax\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\n micromagnetic solver, and by experimental realization. For the experimental implementation, we developed a technique to create effective saturation-magnetization landscapes in YIG by direct focused-ion-beam (FIB) irradiation. This allows us to rapidly transfer the nanoscale design patterns to the YIG medium, without patterning the material by etching. We measured the effective saturation magnetization corresponding to the FIB dose levels in advance and used this mapping to translate the designed scatterer to the required dose levels. Our demonstration serves as a proof of concept for a workflow that can be used to realize more sophisticated spin-wave devices with complex functionality, e.g., spin-wave signal processors, or neuromorphic devices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Experimental Demonstration of a Spin-Wave Lens Designed With Machine Learning\",\"authors\":\"Martina Kiechle;Levente Maucha;Valentin Ahrens;Carsten Dubs;Wolfgang Porod;Gyorgy Csaba;Markus Becherer;Adam Papp\",\"doi\":\"10.1109/LMAG.2022.3209647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we present the design and experimental realization of a device that acts like a spin-wave lens i.e., it focuses spin waves to a specified location. The structure of the lens does not resemble any conventional lens design. It is a nonintuitive pattern produced by a machine-learning algorithm. As a spin-wave design tool, we used our custom micromagnetic solver SpinTorch, which has built-in automatic gradient calculation and can perform backpropagation through time for spin-wave propagation. The training itself is performed with the saturation magnetization of a yttrium-iron-garnet (YIG) film as a variable parameter, with the goal to guide spin waves to a predefined location. We verified the operation of the device in the widely used mumax\\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\\n micromagnetic solver, and by experimental realization. For the experimental implementation, we developed a technique to create effective saturation-magnetization landscapes in YIG by direct focused-ion-beam (FIB) irradiation. This allows us to rapidly transfer the nanoscale design patterns to the YIG medium, without patterning the material by etching. We measured the effective saturation magnetization corresponding to the FIB dose levels in advance and used this mapping to translate the designed scatterer to the required dose levels. Our demonstration serves as a proof of concept for a workflow that can be used to realize more sophisticated spin-wave devices with complex functionality, e.g., spin-wave signal processors, or neuromorphic devices.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9903543/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9903543/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

在这封信中,我们介绍了一种类似于自旋波透镜的装置的设计和实验实现,即它将自旋波聚焦到指定的位置。透镜的结构与任何传统的透镜设计都不相似。这是一种由机器学习算法产生的非直觉模式。作为一种自旋波设计工具,我们使用了我们定制的微磁解算器SpinTorch,该解算器具有内置的自动梯度计算功能,可以通过时间执行自旋波传播的反向传播。训练本身是以钇铁石榴石(YIG)膜的饱和磁化强度作为可变参数进行的,目的是将自旋波引导到预定位置。我们在广泛使用的mumax$^{3}$微磁求解器中验证了该器件的操作,并通过实验实现。为了实现实验,我们开发了一种通过直接聚焦离子束(FIB)照射在YIG中创建有效饱和磁化景观的技术。这使我们能够快速将纳米级设计图案转移到YIG介质上,而无需通过蚀刻对材料进行图案化。我们提前测量了与FIB剂量水平相对应的有效饱和磁化强度,并使用该映射将设计的散射体转换为所需的剂量水平。我们的演示证明了工作流的概念,该工作流可用于实现具有复杂功能的更复杂的自旋波设备,例如,自旋波信号处理器或神经形态设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Demonstration of a Spin-Wave Lens Designed With Machine Learning
In this letter, we present the design and experimental realization of a device that acts like a spin-wave lens i.e., it focuses spin waves to a specified location. The structure of the lens does not resemble any conventional lens design. It is a nonintuitive pattern produced by a machine-learning algorithm. As a spin-wave design tool, we used our custom micromagnetic solver SpinTorch, which has built-in automatic gradient calculation and can perform backpropagation through time for spin-wave propagation. The training itself is performed with the saturation magnetization of a yttrium-iron-garnet (YIG) film as a variable parameter, with the goal to guide spin waves to a predefined location. We verified the operation of the device in the widely used mumax $^{3}$ micromagnetic solver, and by experimental realization. For the experimental implementation, we developed a technique to create effective saturation-magnetization landscapes in YIG by direct focused-ion-beam (FIB) irradiation. This allows us to rapidly transfer the nanoscale design patterns to the YIG medium, without patterning the material by etching. We measured the effective saturation magnetization corresponding to the FIB dose levels in advance and used this mapping to translate the designed scatterer to the required dose levels. Our demonstration serves as a proof of concept for a workflow that can be used to realize more sophisticated spin-wave devices with complex functionality, e.g., spin-wave signal processors, or neuromorphic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信