B. P. Alho;P. O. Ribeiro;R. S. de Oliveira;V. S. R. de Sousa;E. P. Nóbrega;B. C. Margato;J. M. N. da Silva;P. J. von Ranke
{"title":"反铁磁性化合物磁热效应的平均场模型","authors":"B. P. Alho;P. O. Ribeiro;R. S. de Oliveira;V. S. R. de Sousa;E. P. Nóbrega;B. C. Margato;J. M. N. da Silva;P. J. von Ranke","doi":"10.1109/LMAG.2022.3226918","DOIUrl":null,"url":null,"abstract":"Antiferromagnetic compounds are known in the literature to present the inverse magnetocaloric effect (MCE). This effect is characterized by the negative adiabatic temperature change \n<inline-formula><tex-math>$\\Delta {T}_S$</tex-math></inline-formula>\n of an antiferromagnetic material when submitted to an applied magnetic field. In an isothermal process, a positive entropy change \n<inline-formula><tex-math>$\\Delta {S}_T$</tex-math></inline-formula>\n is also expected. More recently, the anisotropic character of antiferromagnetic compounds, due to spin-flop and spin-flip transitions, has been pointed out, highlighting the applicability of the antiferromagnetic compounds in a rotary magnetocaloric device. In this work, we systematically investigated a mean-field model that describes the antiferromagnetic behavior of materials in a multisublattice approach. Our model includes the nearest and next-nearest neighbor exchange interaction, the Zeeman effect, and uniaxial anisotropy energy. We investigated the effect of anisotropy on the spin-flop and spin-flip transitions on the usual and anisotropic MCE. We also demonstrated and verified an area rule for \n<inline-formula><tex-math>$ - {\\rm{\\Delta }}{S}_T$</tex-math></inline-formula>\n versus \n<italic>T</i>\n curves that can be used on compounds where the saturation magnetization is magnetic field dependent.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-4"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mean-Field Modeling of Magnetocaloric Effect of Antiferromagnetic Compounds\",\"authors\":\"B. P. Alho;P. O. Ribeiro;R. S. de Oliveira;V. S. R. de Sousa;E. P. Nóbrega;B. C. Margato;J. M. N. da Silva;P. J. von Ranke\",\"doi\":\"10.1109/LMAG.2022.3226918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antiferromagnetic compounds are known in the literature to present the inverse magnetocaloric effect (MCE). This effect is characterized by the negative adiabatic temperature change \\n<inline-formula><tex-math>$\\\\Delta {T}_S$</tex-math></inline-formula>\\n of an antiferromagnetic material when submitted to an applied magnetic field. In an isothermal process, a positive entropy change \\n<inline-formula><tex-math>$\\\\Delta {S}_T$</tex-math></inline-formula>\\n is also expected. More recently, the anisotropic character of antiferromagnetic compounds, due to spin-flop and spin-flip transitions, has been pointed out, highlighting the applicability of the antiferromagnetic compounds in a rotary magnetocaloric device. In this work, we systematically investigated a mean-field model that describes the antiferromagnetic behavior of materials in a multisublattice approach. Our model includes the nearest and next-nearest neighbor exchange interaction, the Zeeman effect, and uniaxial anisotropy energy. We investigated the effect of anisotropy on the spin-flop and spin-flip transitions on the usual and anisotropic MCE. We also demonstrated and verified an area rule for \\n<inline-formula><tex-math>$ - {\\\\rm{\\\\Delta }}{S}_T$</tex-math></inline-formula>\\n versus \\n<italic>T</i>\\n curves that can be used on compounds where the saturation magnetization is magnetic field dependent.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"13 \",\"pages\":\"1-4\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9970303/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9970303/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mean-Field Modeling of Magnetocaloric Effect of Antiferromagnetic Compounds
Antiferromagnetic compounds are known in the literature to present the inverse magnetocaloric effect (MCE). This effect is characterized by the negative adiabatic temperature change
$\Delta {T}_S$
of an antiferromagnetic material when submitted to an applied magnetic field. In an isothermal process, a positive entropy change
$\Delta {S}_T$
is also expected. More recently, the anisotropic character of antiferromagnetic compounds, due to spin-flop and spin-flip transitions, has been pointed out, highlighting the applicability of the antiferromagnetic compounds in a rotary magnetocaloric device. In this work, we systematically investigated a mean-field model that describes the antiferromagnetic behavior of materials in a multisublattice approach. Our model includes the nearest and next-nearest neighbor exchange interaction, the Zeeman effect, and uniaxial anisotropy energy. We investigated the effect of anisotropy on the spin-flop and spin-flip transitions on the usual and anisotropic MCE. We also demonstrated and verified an area rule for
$ - {\rm{\Delta }}{S}_T$
versus
T
curves that can be used on compounds where the saturation magnetization is magnetic field dependent.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.