{"title":"基于负微分电阻增强反常霍尔效应的磁性全加器","authors":"Ziyao Lu;Hongming Mou;Yuchen Pu;Yan Wen;Xixiang Zhang;Xiaozhong Zhang","doi":"10.1109/LMAG.2022.3146132","DOIUrl":null,"url":null,"abstract":"Spintronic logic devices have attracted attention because of the prospect of breaking the von Neumann bottleneck through nonvolatile in-memory computing. Although varieties of spin Boolean logic gates have been proposed, spintronic arithmetic logic units such as adders have not been extensively studied because of the difficulties in application of the cascade method of CMOS-based logic in spintronic devices. We experimentally demonstrated a spintronic full adder based on the anomalous Hall effect and geometrical tuning magnetization switching driven by spin-orbit torque. The anomalous Hall effect of magnetic bits was enhanced by nonlinear elements with N-type negative differential resistance to control the \n<sc>on/off</small>\n state of \n<sc>mosfet</small>\ns, which determined the write voltage of the memory unit. The magnetizations of the memory bits in the memory unit were switched one by one as write voltage increased because of geometry difference. The order of magnetization switching caused the response of the anomalous Hall voltage of the memory unit to the input configurations to conform with the logic function of the full adder. The computation function of the full adder combined with memory writing was experimentally realized with only seven magnetic bits and two steps. The reduced number of magnetic bits and time steps indicated the efficiency of space and time of our device, which is beneficial for practical applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Full Adder Based on Negative Differential Resistance-Enhanced Anomalous Hall Effect\",\"authors\":\"Ziyao Lu;Hongming Mou;Yuchen Pu;Yan Wen;Xixiang Zhang;Xiaozhong Zhang\",\"doi\":\"10.1109/LMAG.2022.3146132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spintronic logic devices have attracted attention because of the prospect of breaking the von Neumann bottleneck through nonvolatile in-memory computing. Although varieties of spin Boolean logic gates have been proposed, spintronic arithmetic logic units such as adders have not been extensively studied because of the difficulties in application of the cascade method of CMOS-based logic in spintronic devices. We experimentally demonstrated a spintronic full adder based on the anomalous Hall effect and geometrical tuning magnetization switching driven by spin-orbit torque. The anomalous Hall effect of magnetic bits was enhanced by nonlinear elements with N-type negative differential resistance to control the \\n<sc>on/off</small>\\n state of \\n<sc>mosfet</small>\\ns, which determined the write voltage of the memory unit. The magnetizations of the memory bits in the memory unit were switched one by one as write voltage increased because of geometry difference. The order of magnetization switching caused the response of the anomalous Hall voltage of the memory unit to the input configurations to conform with the logic function of the full adder. The computation function of the full adder combined with memory writing was experimentally realized with only seven magnetic bits and two steps. The reduced number of magnetic bits and time steps indicated the efficiency of space and time of our device, which is beneficial for practical applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9695346/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9695346/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic Full Adder Based on Negative Differential Resistance-Enhanced Anomalous Hall Effect
Spintronic logic devices have attracted attention because of the prospect of breaking the von Neumann bottleneck through nonvolatile in-memory computing. Although varieties of spin Boolean logic gates have been proposed, spintronic arithmetic logic units such as adders have not been extensively studied because of the difficulties in application of the cascade method of CMOS-based logic in spintronic devices. We experimentally demonstrated a spintronic full adder based on the anomalous Hall effect and geometrical tuning magnetization switching driven by spin-orbit torque. The anomalous Hall effect of magnetic bits was enhanced by nonlinear elements with N-type negative differential resistance to control the
on/off
state of
mosfet
s, which determined the write voltage of the memory unit. The magnetizations of the memory bits in the memory unit were switched one by one as write voltage increased because of geometry difference. The order of magnetization switching caused the response of the anomalous Hall voltage of the memory unit to the input configurations to conform with the logic function of the full adder. The computation function of the full adder combined with memory writing was experimentally realized with only seven magnetic bits and two steps. The reduced number of magnetic bits and time steps indicated the efficiency of space and time of our device, which is beneficial for practical applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.