Lane-Emden问题正解的唯一性、多重性和非一般性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Houwang Li , Juncheng Wei , Wenming Zou
{"title":"Lane-Emden问题正解的唯一性、多重性和非一般性","authors":"Houwang Li ,&nbsp;Juncheng Wei ,&nbsp;Wenming Zou","doi":"10.1016/j.matpur.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the nearly critical Lane-Emden equations<span><span><span>(⁎)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>ε</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span><span><span> is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a </span>Morse function, then for small </span><em>ε</em> the equation <span>(⁎)</span><span> has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to </span><span>(⁎)</span> under some conditions.</p><p>In general, the solutions of <span>(⁎)</span> may blow-up at multiple points <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of Ω as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>. In particular, when Ω is convex, there must be a unique blow-up point (i.e., <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span><span>). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to </span><span>(⁎)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem\",\"authors\":\"Houwang Li ,&nbsp;Juncheng Wei ,&nbsp;Wenming Zou\",\"doi\":\"10.1016/j.matpur.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the nearly critical Lane-Emden equations<span><span><span>(⁎)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>ε</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span><span><span> is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a </span>Morse function, then for small </span><em>ε</em> the equation <span>(⁎)</span><span> has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to </span><span>(⁎)</span> under some conditions.</p><p>In general, the solutions of <span>(⁎)</span> may blow-up at multiple points <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of Ω as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>. In particular, when Ω is convex, there must be a unique blow-up point (i.e., <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span><span>). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to </span><span>(⁎)</span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了近临界Lane-Emden方程(){-Δu=up-εinΩ,u>;0inΩ,u=0 on⏴Ω,其中Ω⊂RN的N≥3,p=N+2N−2和ε>;0很小。我们的主要结果是,当Ω是光滑有界凸域,Ω上的Robin函数是Morse函数时,对于小ε,方程()有一个独特的解决方案,也是非退化的。对于非凸域,我们还得到了在某些条件下(i)解的精确个数。通常,(·)的解可能在Ω的多个点a1、…、ak处爆炸为ε→0。特别是,当Ω是凸的时,必须有一个唯一的爆破点(即k=1)。本文利用局部Pohozaev恒等式和爆破技术,即使具有多个爆破点(非凸域),我们也可以证明这种爆破解是唯一的和不退化的。结合这些结论,我们最终得到了(?)解的唯一性、多重性和非一般性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem

In this paper, we study the nearly critical Lane-Emden equations(⁎){Δu=upεinΩ,u>0inΩ,u=0onΩ, where ΩRN with N3, p=N+2N2 and ε>0 is small. Our main result is that when Ω is a smooth bounded convex domain and the Robin function on Ω is a Morse function, then for small ε the equation (⁎) has a unique solution, which is also nondegenerate. As for non-convex domain, we also obtain exact number of solutions to (⁎) under some conditions.

In general, the solutions of (⁎) may blow-up at multiple points a1,,ak of Ω as ε0. In particular, when Ω is convex, there must be a unique blow-up point (i.e., k=1). In this paper, by using the local Pohozaev identities and blow-up techniques, even having multiple blow-up points (non-convex domain), we can prove that such blow-up solution is unique and nondegenerate. Combining these conclusions, we finally obtain the uniqueness, multiplicity and nondegeneracy of solutions to (⁎).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信