平面上磁Neumann特征值的几何界

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bruno Colbois , Corentin Léna , Luigi Provenzano , Alessandro Savo
{"title":"平面上磁Neumann特征值的几何界","authors":"Bruno Colbois ,&nbsp;Corentin Léna ,&nbsp;Luigi Provenzano ,&nbsp;Alessandro Savo","doi":"10.1016/j.matpur.2023.09.014","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the eigenvalues of the magnetic Laplacian on a bounded domain Ω of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with uniform magnetic field <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and magnetic Neumann boundary conditions. We find upper and lower bounds for the ground state energy <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and we provide semiclassical estimates in the spirit of Kröger for the first Riesz mean of the eigenvalues. We also discuss upper bounds for the first eigenvalue for non-constant magnetic fields <span><math><mi>β</mi><mo>=</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> on a simply connected domain in a Riemannian surface.</p><p>In particular: we prove the upper bound <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>β</mi></math></span> for a general plane domain for a constant magnetic field, and the upper bound <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>x</mi><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>⁡</mo><mrow><mo>|</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></mrow></math></span> for a variable magnetic field when Ω is simply connected.</p><p>For smooth domains, we prove a lower bound of <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> depending only on the intensity of the magnetic field <em>β</em> and the rolling radius of the domain.</p><p>The estimates on the Riesz mean imply an upper bound for the averages of the first <em>k</em> eigenvalues which is sharp when <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> and consists of the semiclassical limit <span><math><mfrac><mrow><mn>2</mn><mi>π</mi><mi>k</mi></mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mfrac></math></span> plus an oscillating term.</p><p>We also construct several examples, showing the importance of the topology: in particular we show that an arbitrarily small tubular neighborhood of a generic simple closed curve has lowest eigenvalue bounded away from zero, contrary to the case of a simply connected domain of small area, for which <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is always small.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric bounds for the magnetic Neumann eigenvalues in the plane\",\"authors\":\"Bruno Colbois ,&nbsp;Corentin Léna ,&nbsp;Luigi Provenzano ,&nbsp;Alessandro Savo\",\"doi\":\"10.1016/j.matpur.2023.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the eigenvalues of the magnetic Laplacian on a bounded domain Ω of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with uniform magnetic field <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and magnetic Neumann boundary conditions. We find upper and lower bounds for the ground state energy <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and we provide semiclassical estimates in the spirit of Kröger for the first Riesz mean of the eigenvalues. We also discuss upper bounds for the first eigenvalue for non-constant magnetic fields <span><math><mi>β</mi><mo>=</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> on a simply connected domain in a Riemannian surface.</p><p>In particular: we prove the upper bound <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>β</mi></math></span> for a general plane domain for a constant magnetic field, and the upper bound <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>x</mi><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>⁡</mo><mrow><mo>|</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></mrow></math></span> for a variable magnetic field when Ω is simply connected.</p><p>For smooth domains, we prove a lower bound of <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> depending only on the intensity of the magnetic field <em>β</em> and the rolling radius of the domain.</p><p>The estimates on the Riesz mean imply an upper bound for the averages of the first <em>k</em> eigenvalues which is sharp when <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> and consists of the semiclassical limit <span><math><mfrac><mrow><mn>2</mn><mi>π</mi><mi>k</mi></mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mfrac></math></span> plus an oscillating term.</p><p>We also construct several examples, showing the importance of the topology: in particular we show that an arbitrarily small tubular neighborhood of a generic simple closed curve has lowest eigenvalue bounded away from zero, contrary to the case of a simply connected domain of small area, for which <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is always small.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有均匀磁场的R2的有界域Ω上的磁性拉普拉斯算子的特征值β>;0和磁Neumann边界条件。我们找到了基态能量λ1的上界和下界,并根据Kröger的精神为特征值的第一个Riesz均值提供了半经典估计。我们还讨论了黎曼曲面中单连通域上非常磁场β=β(x)的第一特征值的上界。特别是:我们证明了λ1<;对于恒定磁场的一般平面域的β,并且上界λ1<;maxx∈Ω‾⁡|当Ω简单连接时,可变磁场的β(x)|。对于光滑畴,我们证明了λ1的下界,这仅取决于磁场强度β和畴的滚动半径。对Riesz均值的估计意味着前k个特征值的平均值的上界,当k→∞ 并且由半经典极限2πk|Ω|加上振荡项组成。我们还构造了几个例子,表明了拓扑的重要性:特别地,我们证明了一般简单闭合曲线的任意小的管状邻域具有远离零的最低特征值,这与小面积的单连通域的情况相反,其中λ1总是很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric bounds for the magnetic Neumann eigenvalues in the plane

We consider the eigenvalues of the magnetic Laplacian on a bounded domain Ω of R2 with uniform magnetic field β>0 and magnetic Neumann boundary conditions. We find upper and lower bounds for the ground state energy λ1 and we provide semiclassical estimates in the spirit of Kröger for the first Riesz mean of the eigenvalues. We also discuss upper bounds for the first eigenvalue for non-constant magnetic fields β=β(x) on a simply connected domain in a Riemannian surface.

In particular: we prove the upper bound λ1<β for a general plane domain for a constant magnetic field, and the upper bound λ1<maxxΩ|β(x)| for a variable magnetic field when Ω is simply connected.

For smooth domains, we prove a lower bound of λ1 depending only on the intensity of the magnetic field β and the rolling radius of the domain.

The estimates on the Riesz mean imply an upper bound for the averages of the first k eigenvalues which is sharp when k and consists of the semiclassical limit 2πk|Ω| plus an oscillating term.

We also construct several examples, showing the importance of the topology: in particular we show that an arbitrarily small tubular neighborhood of a generic simple closed curve has lowest eigenvalue bounded away from zero, contrary to the case of a simply connected domain of small area, for which λ1 is always small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信