Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen
{"title":"具有粗糙数据的一维可压缩Navier-Stokes系统的全局适定性","authors":"Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen","doi":"10.1016/j.matpur.2023.09.012","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of the 1d compressible Navier–Stokes system with rough data\",\"authors\":\"Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen\",\"doi\":\"10.1016/j.matpur.2023.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Global well-posedness of the 1d compressible Navier–Stokes system with rough data
In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) [30] established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) [31]. We improve the global well-posedness result of Liu and Yu with initial velocity data in space; and of Wang–Yu–Zhang with initial velocity data in space and initial data of temperature in for any arbitrarily small. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.