具有粗糙数据的一维可压缩Navier-Stokes系统的全局适定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen
{"title":"具有粗糙数据的一维可压缩Navier-Stokes系统的全局适定性","authors":"Ke Chen ,&nbsp;Ly Kim Ha ,&nbsp;Ruilin Hu ,&nbsp;Quoc-Hung Nguyen","doi":"10.1016/j.matpur.2023.09.012","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of the 1d compressible Navier–Stokes system with rough data\",\"authors\":\"Ke Chen ,&nbsp;Ly Kim Ha ,&nbsp;Ruilin Hu ,&nbsp;Quoc-Hung Nguyen\",\"doi\":\"10.1016/j.matpur.2023.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们用粗糙的初始数据研究了气体动力学中一维可压缩Navier-Stokes系统的全局适定性问题。首先,Liu和Yu(2022)[30]利用BV空间中的初速度数据建立了一维等熵cNSE的全局适定性理论。然后,Wang等人将其扩展到BV空间中具有初始速度和温度数据的1d全cNSE。(2022)[31]。利用W2γ,1空间中的初速度数据改进了刘和余的全局适定性结果;对于任意γ>;0任意小。我们的基本思想是基于建立一维抛物方程的各种“端点”平滑估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness of the 1d compressible Navier–Stokes system with rough data

In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) [30] established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) [31]. We improve the global well-posedness result of Liu and Yu with initial velocity data in W2γ,1 space; and of Wang–Yu–Zhang with initial velocity data in L2W2γ,1 space and initial data of temperature in W˙23,65W˙2γ1,1 for any γ>0 arbitrarily small. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信