Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen
{"title":"具有粗糙数据的一维可压缩Navier-Stokes系统的全局适定性","authors":"Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen","doi":"10.1016/j.matpur.2023.09.012","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"179 ","pages":"Pages 425-453"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of the 1d compressible Navier–Stokes system with rough data\",\"authors\":\"Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen\",\"doi\":\"10.1016/j.matpur.2023.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"179 \",\"pages\":\"Pages 425-453\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001332\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001332","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global well-posedness of the 1d compressible Navier–Stokes system with rough data
In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) [30] established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) [31]. We improve the global well-posedness result of Liu and Yu with initial velocity data in space; and of Wang–Yu–Zhang with initial velocity data in space and initial data of temperature in for any arbitrarily small. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.