盐生植物种子生物油催化改性为运输燃料

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD
Labeeb Ali , Toyin Shittu , Mohamed Shafi Kuttiyathil , Ayesha Alam , Muhammad Z. Iqbal , Abbas Khaleel , Kaushik Sivaramakrishnan , Mohammednoor Altarawneh
{"title":"盐生植物种子生物油催化改性为运输燃料","authors":"Labeeb Ali ,&nbsp;Toyin Shittu ,&nbsp;Mohamed Shafi Kuttiyathil ,&nbsp;Ayesha Alam ,&nbsp;Muhammad Z. Iqbal ,&nbsp;Abbas Khaleel ,&nbsp;Kaushik Sivaramakrishnan ,&nbsp;Mohammednoor Altarawneh","doi":"10.1016/j.jobab.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Because of socioeconomic considerations, wide-scale production of biofuel necessitates the utilization of nonedible biomass feedstock that does not compete for land and fresh water resources. In this regard, <em>Salicornia bigelovii</em> (SB) is the most investigated halophyte species. The high oil content in SB seeds has sparked mounting research that aims to utilize SB as an industrial crop in the production of bio-oil, particularly in coastal areas where these plants thrive. However, the oil extracted from the pyrolysis of raw SB seeds is largely dominated by oxygenated fatty acids, most notably 9,12-octadecadienoic acid and 9,17-octadecadienal, typical to that of other crops. The pyrolysate bio-oil of the raw SB seeds exhibited a relative yield of oxygenated compounds that decreased from 57.05 % at 200 °C to 9.81 % at 500 °C, and the relative yield of nitrogenated compounds increased from 4.86 % at 200 °C to 21.97 % at 500 °C. To improve the quality of the produced bio-oil, herein we investigated the catalytic hydrodeoxygenation (HDO) of the fragments that were produced from the thermal degradation of SB seeds. A 5 %Ni–CeO2 catalyst was prepared and characterized by a wide array of methods X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, scanning electron microscope, Brunauer-Emmett-Teller analysis, and thermogravimetric analyzer. The catalytic run was executed between 200 and 500 °C in a flow reactor. The deployed catalytic methodology displayed a profound HDO capacity. At 400 °C, for instance, the gas chromatography mass spectroscopy (GC–MS) detected loads of paraffin and aromatic compounds exists at appreciable values of 48.0 % and 28.5 %, respectively. With a total relative yield of 43.2 % (at 400 °C), C<sub>8</sub>–C<sub>15</sub> species (<em>i.e</em>., jet fuel fractions) were the most abundant species in the upgraded SB bio-oil. The release of H<sub>2</sub>, CO, CO<sub>2</sub>, and CH<sub>4</sub> was analyzed qualitatively and quantitatively using gas chromatography thermal conductivity detector and Fourier infrared spectroscopic analysis. When the Ni–CeO2 catalyst was utilized, a complete deoxygenated bio-oil was obtained from SB seeds using the surface-assisted HDO reaction. On the basis of the elemental analysis, the biochar's hydrogen and oxygen contents were found to decrease significantly. Density functional theory computations showed mechanisms for reactions that underpinned the experimentally observed hydrodeoxygenation process. Outcomes presented herein shall be instrumental toward the effective utilization of halophyte in the production of commercial transportation fuels.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 444-460"},"PeriodicalIF":20.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Catalytic upgrading of bio-oil from halophyte seeds into transportation fuels\",\"authors\":\"Labeeb Ali ,&nbsp;Toyin Shittu ,&nbsp;Mohamed Shafi Kuttiyathil ,&nbsp;Ayesha Alam ,&nbsp;Muhammad Z. Iqbal ,&nbsp;Abbas Khaleel ,&nbsp;Kaushik Sivaramakrishnan ,&nbsp;Mohammednoor Altarawneh\",\"doi\":\"10.1016/j.jobab.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Because of socioeconomic considerations, wide-scale production of biofuel necessitates the utilization of nonedible biomass feedstock that does not compete for land and fresh water resources. In this regard, <em>Salicornia bigelovii</em> (SB) is the most investigated halophyte species. The high oil content in SB seeds has sparked mounting research that aims to utilize SB as an industrial crop in the production of bio-oil, particularly in coastal areas where these plants thrive. However, the oil extracted from the pyrolysis of raw SB seeds is largely dominated by oxygenated fatty acids, most notably 9,12-octadecadienoic acid and 9,17-octadecadienal, typical to that of other crops. The pyrolysate bio-oil of the raw SB seeds exhibited a relative yield of oxygenated compounds that decreased from 57.05 % at 200 °C to 9.81 % at 500 °C, and the relative yield of nitrogenated compounds increased from 4.86 % at 200 °C to 21.97 % at 500 °C. To improve the quality of the produced bio-oil, herein we investigated the catalytic hydrodeoxygenation (HDO) of the fragments that were produced from the thermal degradation of SB seeds. A 5 %Ni–CeO2 catalyst was prepared and characterized by a wide array of methods X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, scanning electron microscope, Brunauer-Emmett-Teller analysis, and thermogravimetric analyzer. The catalytic run was executed between 200 and 500 °C in a flow reactor. The deployed catalytic methodology displayed a profound HDO capacity. At 400 °C, for instance, the gas chromatography mass spectroscopy (GC–MS) detected loads of paraffin and aromatic compounds exists at appreciable values of 48.0 % and 28.5 %, respectively. With a total relative yield of 43.2 % (at 400 °C), C<sub>8</sub>–C<sub>15</sub> species (<em>i.e</em>., jet fuel fractions) were the most abundant species in the upgraded SB bio-oil. The release of H<sub>2</sub>, CO, CO<sub>2</sub>, and CH<sub>4</sub> was analyzed qualitatively and quantitatively using gas chromatography thermal conductivity detector and Fourier infrared spectroscopic analysis. When the Ni–CeO2 catalyst was utilized, a complete deoxygenated bio-oil was obtained from SB seeds using the surface-assisted HDO reaction. On the basis of the elemental analysis, the biochar's hydrogen and oxygen contents were found to decrease significantly. Density functional theory computations showed mechanisms for reactions that underpinned the experimentally observed hydrodeoxygenation process. Outcomes presented herein shall be instrumental toward the effective utilization of halophyte in the production of commercial transportation fuels.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":\"8 4\",\"pages\":\"Pages 444-460\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969823000610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969823000610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 1

摘要

出于社会经济考虑,大规模生产生物燃料需要使用不与土地和淡水资源竞争的不可食用生物质原料。在这方面,大海蓬(SB)是研究最多的盐生植物物种。SB种子中的高油含量引发了越来越多的研究,旨在将SB作为一种工业作物用于生产生物油,特别是在这些植物生长茂盛的沿海地区。然而,从生SB种子的热解中提取的油主要是含氧脂肪酸,最显著的是9,12-十八碳二烯酸和9,17-十八碳烯醛,这是其他作物的典型脂肪酸。生SB种子的热解生物油表现出含氧化合物的相对产率从57.05下降 % 在200 °C至9.81 % 在500 °C,含氮化合物的相对产率从4.86提高 % 在200 °C至21.97 % 在500 °C。为了提高生产的生物油的质量,我们研究了SB种子热降解产生的碎片的催化加氢脱氧(HDO)。A 5 %通过X射线衍射、X射线光电子能谱、程序升温还原、扫描电子显微镜、Brunauer-Emmett-Teller分析和热重分析仪等多种方法制备并表征了Ni–CeO2催化剂。催化运行在200和500之间进行 °C。部署的催化方法显示出深刻的HDO能力。在400 例如,在°C下,气相色谱-质谱(GC–MS)检测到的石蜡和芳香族化合物的负载量为48.0 % 和28.5 %, 分别地总相对产量为43.2 % (400 °C),C8–C15物种(即喷气燃料馏分)是升级SB生物油中最丰富的物种。使用气相色谱热导检测器和傅立叶红外光谱分析对H2、CO、CO2和CH4的释放进行了定性和定量分析。当使用Ni–CeO2催化剂时,使用表面辅助HDO反应从SB种子中获得完全脱氧的生物油。在元素分析的基础上,发现生物炭的氢和氧含量显著降低。密度泛函理论计算显示了支持实验观察到的加氢脱氧过程的反应机制。本文提出的结果将有助于在商业运输燃料的生产中有效利用盐生植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalytic upgrading of bio-oil from halophyte seeds into transportation fuels

Because of socioeconomic considerations, wide-scale production of biofuel necessitates the utilization of nonedible biomass feedstock that does not compete for land and fresh water resources. In this regard, Salicornia bigelovii (SB) is the most investigated halophyte species. The high oil content in SB seeds has sparked mounting research that aims to utilize SB as an industrial crop in the production of bio-oil, particularly in coastal areas where these plants thrive. However, the oil extracted from the pyrolysis of raw SB seeds is largely dominated by oxygenated fatty acids, most notably 9,12-octadecadienoic acid and 9,17-octadecadienal, typical to that of other crops. The pyrolysate bio-oil of the raw SB seeds exhibited a relative yield of oxygenated compounds that decreased from 57.05 % at 200 °C to 9.81 % at 500 °C, and the relative yield of nitrogenated compounds increased from 4.86 % at 200 °C to 21.97 % at 500 °C. To improve the quality of the produced bio-oil, herein we investigated the catalytic hydrodeoxygenation (HDO) of the fragments that were produced from the thermal degradation of SB seeds. A 5 %Ni–CeO2 catalyst was prepared and characterized by a wide array of methods X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, scanning electron microscope, Brunauer-Emmett-Teller analysis, and thermogravimetric analyzer. The catalytic run was executed between 200 and 500 °C in a flow reactor. The deployed catalytic methodology displayed a profound HDO capacity. At 400 °C, for instance, the gas chromatography mass spectroscopy (GC–MS) detected loads of paraffin and aromatic compounds exists at appreciable values of 48.0 % and 28.5 %, respectively. With a total relative yield of 43.2 % (at 400 °C), C8–C15 species (i.e., jet fuel fractions) were the most abundant species in the upgraded SB bio-oil. The release of H2, CO, CO2, and CH4 was analyzed qualitatively and quantitatively using gas chromatography thermal conductivity detector and Fourier infrared spectroscopic analysis. When the Ni–CeO2 catalyst was utilized, a complete deoxygenated bio-oil was obtained from SB seeds using the surface-assisted HDO reaction. On the basis of the elemental analysis, the biochar's hydrogen and oxygen contents were found to decrease significantly. Density functional theory computations showed mechanisms for reactions that underpinned the experimentally observed hydrodeoxygenation process. Outcomes presented herein shall be instrumental toward the effective utilization of halophyte in the production of commercial transportation fuels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信