Segun E. Ibitoye , Rasheedat M. Mahamood , Tien-Chien Jen , Chanchal Loha , Esther T. Akinlabi
{"title":"生物质固体燃料概述:生物质来源、加工方法以及形态和微观结构特性","authors":"Segun E. Ibitoye , Rasheedat M. Mahamood , Tien-Chien Jen , Chanchal Loha , Esther T. Akinlabi","doi":"10.1016/j.jobab.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass solid fuel (BSF) has emerged as a promising renewable energy source, but its morphological and microstructural properties are crucial in determining their physical, mechanical, and chemical characteristics. This paper provides an overview of recent research on BSF. The focus is on biomass sources, BSF processing methods, and morphological and microstructural properties, with a special emphasis on energy-related studies. Specific inclusion and exclusion criteria were established for the study to ensure relevance. The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years. Various technologies for converting biomass into usable energy were discussed, including gasification, torrefaction, carbonization, hydrothermal carbonization (HTC), and pyrolysis. Each has advantages and disadvantages in energy performance, techno-economics, and climate impact. Gasification is efficient but requires high investment. Pyrolysis produces bio-oil, char, and gases based on feedstock availability. Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications. Torrefaction increases energy density for co-firing with coal. HTC processes wet biomass efficiently with lower energy input. Thermal treatment affects BSF durability and strength, often leading to less durability due to voids and gaps between particles. Hydrothermal carbonization alters surface morphology, creating cavities, pores, and distinctive shapes. Slow pyrolysis generates biochar with better morphological properties, while fast pyrolysis yields biochar with lower porosity and surface area. Wood constitutes 67% of the biomass sources utilized for bioenergy generation, followed by wood residues (5%), agro-residues (4%), municipal solid wastes (3%), energy crops (3%), livestock wastes (3%), and forest residues (1%). Each source has advantages and drawbacks, such as availability, cost, environmental impact, and suitability for specific regions and energy requirements. This review is valuable for energy professionals, researchers, and policymakers interested in biomass solid fuel.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 333-360"},"PeriodicalIF":20.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties\",\"authors\":\"Segun E. Ibitoye , Rasheedat M. Mahamood , Tien-Chien Jen , Chanchal Loha , Esther T. Akinlabi\",\"doi\":\"10.1016/j.jobab.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomass solid fuel (BSF) has emerged as a promising renewable energy source, but its morphological and microstructural properties are crucial in determining their physical, mechanical, and chemical characteristics. This paper provides an overview of recent research on BSF. The focus is on biomass sources, BSF processing methods, and morphological and microstructural properties, with a special emphasis on energy-related studies. Specific inclusion and exclusion criteria were established for the study to ensure relevance. The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years. Various technologies for converting biomass into usable energy were discussed, including gasification, torrefaction, carbonization, hydrothermal carbonization (HTC), and pyrolysis. Each has advantages and disadvantages in energy performance, techno-economics, and climate impact. Gasification is efficient but requires high investment. Pyrolysis produces bio-oil, char, and gases based on feedstock availability. Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications. Torrefaction increases energy density for co-firing with coal. HTC processes wet biomass efficiently with lower energy input. Thermal treatment affects BSF durability and strength, often leading to less durability due to voids and gaps between particles. Hydrothermal carbonization alters surface morphology, creating cavities, pores, and distinctive shapes. Slow pyrolysis generates biochar with better morphological properties, while fast pyrolysis yields biochar with lower porosity and surface area. Wood constitutes 67% of the biomass sources utilized for bioenergy generation, followed by wood residues (5%), agro-residues (4%), municipal solid wastes (3%), energy crops (3%), livestock wastes (3%), and forest residues (1%). Each source has advantages and drawbacks, such as availability, cost, environmental impact, and suitability for specific regions and energy requirements. This review is valuable for energy professionals, researchers, and policymakers interested in biomass solid fuel.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":\"8 4\",\"pages\":\"Pages 333-360\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969823000592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969823000592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties
Biomass solid fuel (BSF) has emerged as a promising renewable energy source, but its morphological and microstructural properties are crucial in determining their physical, mechanical, and chemical characteristics. This paper provides an overview of recent research on BSF. The focus is on biomass sources, BSF processing methods, and morphological and microstructural properties, with a special emphasis on energy-related studies. Specific inclusion and exclusion criteria were established for the study to ensure relevance. The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years. Various technologies for converting biomass into usable energy were discussed, including gasification, torrefaction, carbonization, hydrothermal carbonization (HTC), and pyrolysis. Each has advantages and disadvantages in energy performance, techno-economics, and climate impact. Gasification is efficient but requires high investment. Pyrolysis produces bio-oil, char, and gases based on feedstock availability. Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications. Torrefaction increases energy density for co-firing with coal. HTC processes wet biomass efficiently with lower energy input. Thermal treatment affects BSF durability and strength, often leading to less durability due to voids and gaps between particles. Hydrothermal carbonization alters surface morphology, creating cavities, pores, and distinctive shapes. Slow pyrolysis generates biochar with better morphological properties, while fast pyrolysis yields biochar with lower porosity and surface area. Wood constitutes 67% of the biomass sources utilized for bioenergy generation, followed by wood residues (5%), agro-residues (4%), municipal solid wastes (3%), energy crops (3%), livestock wastes (3%), and forest residues (1%). Each source has advantages and drawbacks, such as availability, cost, environmental impact, and suitability for specific regions and energy requirements. This review is valuable for energy professionals, researchers, and policymakers interested in biomass solid fuel.