{"title":"超kähler流形的抛物自同构","authors":"Ekaterina Amerik , Misha Verbitsky","doi":"10.1016/j.matpur.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>A parabolic automorphism of a hyperkähler manifold </span><em>M</em> is a holomorphic automorphism acting on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span><span> by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian </span>fibration<span> acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on </span></span><em>M</em> ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parabolic automorphisms of hyperkähler manifolds\",\"authors\":\"Ekaterina Amerik , Misha Verbitsky\",\"doi\":\"10.1016/j.matpur.2023.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A parabolic automorphism of a hyperkähler manifold </span><em>M</em> is a holomorphic automorphism acting on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span><span> by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian </span>fibration<span> acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on </span></span><em>M</em> ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A parabolic automorphism of a hyperkähler manifold M is a holomorphic automorphism acting on by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian fibration acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on M ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.