{"title":"超kähler流形的抛物自同构","authors":"Ekaterina Amerik , Misha Verbitsky","doi":"10.1016/j.matpur.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>A parabolic automorphism of a hyperkähler manifold </span><em>M</em> is a holomorphic automorphism acting on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span><span> by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian </span>fibration<span> acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on </span></span><em>M</em> ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"179 ","pages":"Pages 232-252"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parabolic automorphisms of hyperkähler manifolds\",\"authors\":\"Ekaterina Amerik , Misha Verbitsky\",\"doi\":\"10.1016/j.matpur.2023.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A parabolic automorphism of a hyperkähler manifold </span><em>M</em> is a holomorphic automorphism acting on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span><span> by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian </span>fibration<span> acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on </span></span><em>M</em> ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"179 \",\"pages\":\"Pages 232-252\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001277\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001277","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A parabolic automorphism of a hyperkähler manifold M is a holomorphic automorphism acting on by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian fibration acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on M ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.