超kähler流形的抛物自同构

IF 2.1 1区 数学 Q1 MATHEMATICS
Ekaterina Amerik , Misha Verbitsky
{"title":"超kähler流形的抛物自同构","authors":"Ekaterina Amerik ,&nbsp;Misha Verbitsky","doi":"10.1016/j.matpur.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>A parabolic automorphism of a hyperkähler manifold </span><em>M</em> is a holomorphic automorphism acting on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span><span> by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian </span>fibration<span> acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on </span></span><em>M</em> ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"179 ","pages":"Pages 232-252"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parabolic automorphisms of hyperkähler manifolds\",\"authors\":\"Ekaterina Amerik ,&nbsp;Misha Verbitsky\",\"doi\":\"10.1016/j.matpur.2023.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A parabolic automorphism of a hyperkähler manifold </span><em>M</em> is a holomorphic automorphism acting on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span><span><span> by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian </span>fibration<span> acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on </span></span><em>M</em> ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"179 \",\"pages\":\"Pages 232-252\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001277\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001277","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

超kähler流形M的抛物自同构是一个作用于H2(M)的非半单拟单势线性映射的全纯自同构。我们证明了一个保持拉格朗日纤维化的抛物型自同构遍历地作用于几乎所有的纤维。对于满足hyperkähler-SYZ猜想的流形,不变拉格朗日fibration的存在是自动的;这包括所有已知的超kähler流形的例子。当存在两个保留两个不同拉格朗日fibration的抛物自同构时,可以得出它们生成的群遍历地作用于M。我们的结果推广了S.Cantat对K3曲面的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic automorphisms of hyperkähler manifolds

A parabolic automorphism of a hyperkähler manifold M is a holomorphic automorphism acting on H2(M) by a non-semisimple quasi-unipotent linear map. We prove that a parabolic automorphism which preserves a Lagrangian fibration acts on almost all fibers ergodically. The existence of an invariant Lagrangian fibration is automatic for manifolds satisfying the hyperkähler SYZ conjecture; this includes all known examples of hyperkähler manifolds. When there are two parabolic automorphisms preserving two distinct Lagrangian fibrations, it follows that the group they generate acts on M ergodically. Our results generalize those obtained by S. Cantat for K3 surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信