利用贝叶斯估计器稳健校正金融模型

IF 0.8 4区 经济学 Q4 BUSINESS, FINANCE
A. Gupta, C. Reisinger
{"title":"利用贝叶斯估计器稳健校正金融模型","authors":"A. Gupta, C. Reisinger","doi":"10.21314/JCF.2014.285","DOIUrl":null,"url":null,"abstract":"We consider a general calibration problem for derivative pricing models, which we reformulate into a Bayesian framework to attain posterior distributions for model parameters. It is then shown how the posterior distribution can be used to estimate prices for exotic options. We apply the procedure to a discrete local volatility model and work in great detail through numerical examples to clarify the construction of Bayesian estimators and their robustness to the model specification, number of calibration products, noisy data and misspecification of the prior.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"17 1","pages":"3-36"},"PeriodicalIF":0.8000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Robust calibration of financial models using Bayesian estimators\",\"authors\":\"A. Gupta, C. Reisinger\",\"doi\":\"10.21314/JCF.2014.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a general calibration problem for derivative pricing models, which we reformulate into a Bayesian framework to attain posterior distributions for model parameters. It is then shown how the posterior distribution can be used to estimate prices for exotic options. We apply the procedure to a discrete local volatility model and work in great detail through numerical examples to clarify the construction of Bayesian estimators and their robustness to the model specification, number of calibration products, noisy data and misspecification of the prior.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\"17 1\",\"pages\":\"3-36\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2014.285\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2014.285","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 15

摘要

我们考虑了衍生品定价模型的一般校准问题,我们将其重新表述为贝叶斯框架以获得模型参数的后验分布。然后展示了如何使用后验分布来估计奇异期权的价格。我们将该过程应用于一个离散的局部波动模型,并通过数值示例详细说明贝叶斯估计器的构造及其对模型规格,校准产品数量,噪声数据和先前错误规格的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust calibration of financial models using Bayesian estimators
We consider a general calibration problem for derivative pricing models, which we reformulate into a Bayesian framework to attain posterior distributions for model parameters. It is then shown how the posterior distribution can be used to estimate prices for exotic options. We apply the procedure to a discrete local volatility model and work in great detail through numerical examples to clarify the construction of Bayesian estimators and their robustness to the model specification, number of calibration products, noisy data and misspecification of the prior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
8
期刊介绍: The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信