Michalis Kapsos, Steve Zymler, Nicos Christofides, B. Rustem
{"title":"使用线性规划优化Omega比率","authors":"Michalis Kapsos, Steve Zymler, Nicos Christofides, B. Rustem","doi":"10.21314/JCF.2014.283","DOIUrl":null,"url":null,"abstract":"The Omega Ratio is a recent performance measure. It captures both, the downside and upside potential of the constructed portfolio, while remaining consistent with utility maximization. In this paper, a new approach to compute the maximum Omega Ratio as a linear program is derived. While the Omega ratio is considered to be a non-convex function, we show an exact formulation in terms of a convex optimization problem, and transform it as a linear program. The convex reformulation for the Omega Ratio maximization is a direct analogue to mean-variance framework and the Sharpe Ratio maximization.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"17 1","pages":"49-57"},"PeriodicalIF":0.8000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Optimizing the Omega ratio using linear programming\",\"authors\":\"Michalis Kapsos, Steve Zymler, Nicos Christofides, B. Rustem\",\"doi\":\"10.21314/JCF.2014.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Omega Ratio is a recent performance measure. It captures both, the downside and upside potential of the constructed portfolio, while remaining consistent with utility maximization. In this paper, a new approach to compute the maximum Omega Ratio as a linear program is derived. While the Omega ratio is considered to be a non-convex function, we show an exact formulation in terms of a convex optimization problem, and transform it as a linear program. The convex reformulation for the Omega Ratio maximization is a direct analogue to mean-variance framework and the Sharpe Ratio maximization.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\"17 1\",\"pages\":\"49-57\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2014.283\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2014.283","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Optimizing the Omega ratio using linear programming
The Omega Ratio is a recent performance measure. It captures both, the downside and upside potential of the constructed portfolio, while remaining consistent with utility maximization. In this paper, a new approach to compute the maximum Omega Ratio as a linear program is derived. While the Omega ratio is considered to be a non-convex function, we show an exact formulation in terms of a convex optimization problem, and transform it as a linear program. The convex reformulation for the Omega Ratio maximization is a direct analogue to mean-variance framework and the Sharpe Ratio maximization.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.