Raquel J. Fonseca, Steve Zymler, W. Wiesemann, B. Rustem
{"title":"货币投资组合的稳健优化","authors":"Raquel J. Fonseca, Steve Zymler, W. Wiesemann, B. Rustem","doi":"10.21314/JCF.2011.227","DOIUrl":null,"url":null,"abstract":"We study a currency investment strategy, where we maximize the return on a portfolio of foreign currencies relative to any appreciation of the corresponding foreign exchange rates. Given the uncertainty in the estimation of the future currency values, we employ robust optimization techniques to maximize the return on the portfolio for the worst-case foreign exchange rate scenario. Currency portfolios differ from stock only portfolios in that a triangular relationship exists among foreign exchange rates to avoid arbitrage. Although the inclusion of such a constraint in the model would lead to a nonconvex problem, we show that by choosing appropriate uncertainty sets for the exchange and the cross exchange rates, we obtain a convex model that can be solved efficiently. Alongside robust optimization, an additional guarantee is explored by investing in currency options to cover the eventuality that foreign exchange rates materialize outside the specified uncertainty sets. We present numerical results that show the relationship between the size of the uncertainty sets and the distribution of the investment among currencies and options, and the overall performance of the model in a series of backtesting experiments.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"15 1","pages":"3-30"},"PeriodicalIF":0.8000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Robust Optimization of Currency Portfolios\",\"authors\":\"Raquel J. Fonseca, Steve Zymler, W. Wiesemann, B. Rustem\",\"doi\":\"10.21314/JCF.2011.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a currency investment strategy, where we maximize the return on a portfolio of foreign currencies relative to any appreciation of the corresponding foreign exchange rates. Given the uncertainty in the estimation of the future currency values, we employ robust optimization techniques to maximize the return on the portfolio for the worst-case foreign exchange rate scenario. Currency portfolios differ from stock only portfolios in that a triangular relationship exists among foreign exchange rates to avoid arbitrage. Although the inclusion of such a constraint in the model would lead to a nonconvex problem, we show that by choosing appropriate uncertainty sets for the exchange and the cross exchange rates, we obtain a convex model that can be solved efficiently. Alongside robust optimization, an additional guarantee is explored by investing in currency options to cover the eventuality that foreign exchange rates materialize outside the specified uncertainty sets. We present numerical results that show the relationship between the size of the uncertainty sets and the distribution of the investment among currencies and options, and the overall performance of the model in a series of backtesting experiments.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\"15 1\",\"pages\":\"3-30\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2011.227\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2011.227","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
We study a currency investment strategy, where we maximize the return on a portfolio of foreign currencies relative to any appreciation of the corresponding foreign exchange rates. Given the uncertainty in the estimation of the future currency values, we employ robust optimization techniques to maximize the return on the portfolio for the worst-case foreign exchange rate scenario. Currency portfolios differ from stock only portfolios in that a triangular relationship exists among foreign exchange rates to avoid arbitrage. Although the inclusion of such a constraint in the model would lead to a nonconvex problem, we show that by choosing appropriate uncertainty sets for the exchange and the cross exchange rates, we obtain a convex model that can be solved efficiently. Alongside robust optimization, an additional guarantee is explored by investing in currency options to cover the eventuality that foreign exchange rates materialize outside the specified uncertainty sets. We present numerical results that show the relationship between the size of the uncertainty sets and the distribution of the investment among currencies and options, and the overall performance of the model in a series of backtesting experiments.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.