聚电解质基导电水凝胶:从理论到应用

Soft science Pub Date : 2022-01-01 DOI:10.20517/ss.2022.09
Xiangchao Fan, Zhao-jun Chen, Haotian Sun, S. Zeng, Ruonan Liu, Ye Tian
{"title":"聚电解质基导电水凝胶:从理论到应用","authors":"Xiangchao Fan, Zhao-jun Chen, Haotian Sun, S. Zeng, Ruonan Liu, Ye Tian","doi":"10.20517/ss.2022.09","DOIUrl":null,"url":null,"abstract":"With the continuous development of soft conductive materials, polyelectrolyte-based conductive hydrogels have gradually become a major research hotspot because of their strong application potential. This review first considers the basic conductive theory of hydrogels, which can be divided into the hydrogel structure and zwitterionic enhancing conductivity theories. We then classify polyelectrolyte-based conductive hydrogels into different types, including double, ionic-hydrogen bond, hydrogen bond,and physically crosslinked networks. Furthermore, the mechanical, electrical, and self-healing properties and fatigue and temperature interference resistance of polyelectrolyte-based conductive hydrogels are described in detail. We then discuss their versatile applications in strain sensors, solid-state supercapacitors, visual displays, wound dressings, and drug delivery. Finally, we offer perspectives on future research trends for polyelectrolyte-based conductive hydrogels.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polyelectrolyte-based conductive hydrogels: from theory to applications\",\"authors\":\"Xiangchao Fan, Zhao-jun Chen, Haotian Sun, S. Zeng, Ruonan Liu, Ye Tian\",\"doi\":\"10.20517/ss.2022.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of soft conductive materials, polyelectrolyte-based conductive hydrogels have gradually become a major research hotspot because of their strong application potential. This review first considers the basic conductive theory of hydrogels, which can be divided into the hydrogel structure and zwitterionic enhancing conductivity theories. We then classify polyelectrolyte-based conductive hydrogels into different types, including double, ionic-hydrogen bond, hydrogen bond,and physically crosslinked networks. Furthermore, the mechanical, electrical, and self-healing properties and fatigue and temperature interference resistance of polyelectrolyte-based conductive hydrogels are described in detail. We then discuss their versatile applications in strain sensors, solid-state supercapacitors, visual displays, wound dressings, and drug delivery. Finally, we offer perspectives on future research trends for polyelectrolyte-based conductive hydrogels.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2022.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2022.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着软质导电材料的不断发展,聚电解质基导电水凝胶因其强大的应用潜力逐渐成为研究热点。本文首先介绍了水凝胶的基本导电理论,分为水凝胶结构理论和两性离子增强导电性理论。然后,我们将基于聚电解质的导电水凝胶分为不同的类型,包括双键、离子氢键、氢键和物理交联网络。此外,详细描述了聚电解质基导电水凝胶的机械、电气和自愈性能以及抗疲劳和温度干扰性能。然后讨论了它们在应变传感器、固态超级电容器、视觉显示、伤口敷料和药物输送方面的广泛应用。最后,对聚电解质导电水凝胶的未来研究趋势进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyelectrolyte-based conductive hydrogels: from theory to applications
With the continuous development of soft conductive materials, polyelectrolyte-based conductive hydrogels have gradually become a major research hotspot because of their strong application potential. This review first considers the basic conductive theory of hydrogels, which can be divided into the hydrogel structure and zwitterionic enhancing conductivity theories. We then classify polyelectrolyte-based conductive hydrogels into different types, including double, ionic-hydrogen bond, hydrogen bond,and physically crosslinked networks. Furthermore, the mechanical, electrical, and self-healing properties and fatigue and temperature interference resistance of polyelectrolyte-based conductive hydrogels are described in detail. We then discuss their versatile applications in strain sensors, solid-state supercapacitors, visual displays, wound dressings, and drug delivery. Finally, we offer perspectives on future research trends for polyelectrolyte-based conductive hydrogels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信