中高脂质样品中聚乙烯的提取与热解-气相色谱-质谱分析

C. Rauert, Yufei Pan, E. Okoffo, J. O'Brien, K. Thomas
{"title":"中高脂质样品中聚乙烯的提取与热解-气相色谱-质谱分析","authors":"C. Rauert, Yufei Pan, E. Okoffo, J. O'Brien, K. Thomas","doi":"10.20517/jeea.2022.04","DOIUrl":null,"url":null,"abstract":"While it is recognised that humans are constantly exposed to plastics, there are limitations in understanding the extent of this exposure, particularly dietary exposure. This lack of information is partly due to challenges with the analysis of complicated matrices. This study aimed to assess the impact of medium to high lipid content (> 3%) food samples on the accurate quantification of polyethylene (PE), using pyrolysis-gas chromatography mass spectrometry, and develop an alternative sample processing strategy. Analysis of saturated, monounsaturated and polyunsaturated fats was demonstrated to form the same pyrolysis products as PE, producing a significant interference hindering quantification. An extraction protocol was developed that involves enzyme digestion to break the lipids into smaller chain fatty acids, removal of these interferences with pressurised liquid extraction washes, before a final extraction of the PE by pressurised liquid extraction. This new method was validated through the analysis of three medium- to high-fat content foods: cow’s milk, eggs and lamb meat, where PE recoveries were acceptable (104% to 127%). Method detection limits were also significantly reduced from 1.9 to 0.05 µg/injection (380 to 10 µg/g) with the new protocol, through the removal of matrix background. PE traces were observed in the three food matrices of 72-240 µg/g, significantly reduced as compared to samples extracted with the old method where concentrations of 12-32 mg/g were calculated, demonstrating the potential for overestimation of dietary exposure. Finally, a simple protocol is reported for future studies to (i) determine if an interference is present and (ii) sample processing methods to remove identified interferences.","PeriodicalId":73738,"journal":{"name":"Journal of environmental exposure assessment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Extraction and Pyrolysis-GC-MS analysis of polyethylene in samples with medium to high lipid content\",\"authors\":\"C. Rauert, Yufei Pan, E. Okoffo, J. O'Brien, K. Thomas\",\"doi\":\"10.20517/jeea.2022.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While it is recognised that humans are constantly exposed to plastics, there are limitations in understanding the extent of this exposure, particularly dietary exposure. This lack of information is partly due to challenges with the analysis of complicated matrices. This study aimed to assess the impact of medium to high lipid content (> 3%) food samples on the accurate quantification of polyethylene (PE), using pyrolysis-gas chromatography mass spectrometry, and develop an alternative sample processing strategy. Analysis of saturated, monounsaturated and polyunsaturated fats was demonstrated to form the same pyrolysis products as PE, producing a significant interference hindering quantification. An extraction protocol was developed that involves enzyme digestion to break the lipids into smaller chain fatty acids, removal of these interferences with pressurised liquid extraction washes, before a final extraction of the PE by pressurised liquid extraction. This new method was validated through the analysis of three medium- to high-fat content foods: cow’s milk, eggs and lamb meat, where PE recoveries were acceptable (104% to 127%). Method detection limits were also significantly reduced from 1.9 to 0.05 µg/injection (380 to 10 µg/g) with the new protocol, through the removal of matrix background. PE traces were observed in the three food matrices of 72-240 µg/g, significantly reduced as compared to samples extracted with the old method where concentrations of 12-32 mg/g were calculated, demonstrating the potential for overestimation of dietary exposure. Finally, a simple protocol is reported for future studies to (i) determine if an interference is present and (ii) sample processing methods to remove identified interferences.\",\"PeriodicalId\":73738,\"journal\":{\"name\":\"Journal of environmental exposure assessment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental exposure assessment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jeea.2022.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental exposure assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jeea.2022.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

虽然人们认识到人类不断接触塑料,但在了解这种接触的程度,特别是饮食接触的程度方面存在局限性。这种信息的缺乏部分是由于分析复杂矩阵的挑战。本研究旨在利用热解-气相色谱-质谱法评估中高脂含量食品样品对聚乙烯(PE)准确定量的影响,并制定一种替代的样品处理策略。饱和脂肪、单不饱和脂肪和多不饱和脂肪的分析与PE形成相同的热解产物,产生了明显的干扰,阻碍了定量。开发了一种提取方案,包括酶消化将脂质分解成小链脂肪酸,用加压液体萃取洗涤去除这些干扰,然后通过加压液体萃取最终提取PE。通过对牛奶、鸡蛋和羊肉三种中高脂肪食品的分析,验证了该方法的有效性,PE回收率在104% ~ 127%之间。通过去除基质背景,新方案的方法检出限也显著降低,从1.9µg/支(380µg/g)到0.05µg/支(10µg/g)。在三种食物基质中观察到72-240 μ g/g的PE痕迹,与使用旧方法提取的样品(计算浓度为12-32 mg/g)相比显着减少,表明可能高估饮食暴露量。最后,报告了一个简单的协议,用于未来的研究,以(i)确定是否存在干扰,(ii)去除已识别干扰的样品处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction and Pyrolysis-GC-MS analysis of polyethylene in samples with medium to high lipid content
While it is recognised that humans are constantly exposed to plastics, there are limitations in understanding the extent of this exposure, particularly dietary exposure. This lack of information is partly due to challenges with the analysis of complicated matrices. This study aimed to assess the impact of medium to high lipid content (> 3%) food samples on the accurate quantification of polyethylene (PE), using pyrolysis-gas chromatography mass spectrometry, and develop an alternative sample processing strategy. Analysis of saturated, monounsaturated and polyunsaturated fats was demonstrated to form the same pyrolysis products as PE, producing a significant interference hindering quantification. An extraction protocol was developed that involves enzyme digestion to break the lipids into smaller chain fatty acids, removal of these interferences with pressurised liquid extraction washes, before a final extraction of the PE by pressurised liquid extraction. This new method was validated through the analysis of three medium- to high-fat content foods: cow’s milk, eggs and lamb meat, where PE recoveries were acceptable (104% to 127%). Method detection limits were also significantly reduced from 1.9 to 0.05 µg/injection (380 to 10 µg/g) with the new protocol, through the removal of matrix background. PE traces were observed in the three food matrices of 72-240 µg/g, significantly reduced as compared to samples extracted with the old method where concentrations of 12-32 mg/g were calculated, demonstrating the potential for overestimation of dietary exposure. Finally, a simple protocol is reported for future studies to (i) determine if an interference is present and (ii) sample processing methods to remove identified interferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信